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‣ Centimeter-level localization is a key task for self-driving. 
‣ Learning to match observations to maps shown to be highly effective. 
‣ Detailed maps can have very demanding storage requirements. 
‣ Goals:
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We are hiring! Meet us at booth #1155.

‣ Our goal is to perform online localization, and compute a centimeter-level 
accurate map-relative pose of the AV at every time step. 

‣ The poses are parameterized with three degrees of freedom (x, y, yaw). 
‣ Localization follows a standard histogram filtering formulation. 
‣ We train the matching module leveraged in the update step of the filter. 
‣ This 3D search space is discretized, and searched exhaustively around the 

predicted pose at each time. 
‣ Predicted pose = past pose + integrated IMU & wheel encoders.

‣ This work addresses one of the main challenges associated with high-
definition maps: storage. 

‣ We’ve shown that task-specific compression can improve over general-
purpose compression, allowing giant maps to be kept in-memory. 

‣ Several avenues for future work remain, including: 
‣ Investigating methods for compressing 3D point clouds and doing full 

six-degrees-of-freedom localization. 
‣ End-to-end learning with the pose filter in the loop, similar to L3-Net. 
‣ Learning with mapping-in-the-loop.

Ablation: Error, Failure Rate and bits/m2 as a function of map resolution (cm/px).

Comparison to non-learning baselines on our urban dataset.

Comparison to learning-based baselines on our urban dataset.
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‣ We compute feature embeddings for online data and for map data such 
that matching accuracy is maximized. 

‣ Train with compression in the loop to reduce the map’s bitrate. 
‣ Build good sparse binary representations such that Huffman and Run-

Length Encoding can do a very good job.

‣ 200x better than lossless. 
‣ 20x better than lowest-quality 

lossy WebP codec. 
‣ 40%  better than generic learning 

baseline. 
‣ Results enable maps of country-

wide road networks to fit onboard 
storage. 

‣ Regional maps can fit in RAM.
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‣ Note: No need to compress online observations (never stored). 
‣ Input LiDAR and maps are all in bird’s-eye view (2D).

168 TiB

0.28 TiB

170

6 TiB

Probabilistic Localization3.

Motivation1.

Related Work2.
Learning to Compress & Match4.

‣ Learning-based Online Localization  
‣ Learning to Localize Using a LiDAR Intensity Map (I. A. Bârsan et al., 

CoRL ’18, our previous work) showed it is viable to cast localization as a 
learnable matching task. 

‣ L3-Net by Lu et al., 2019 presents a system which learns to match point 
clouds for localization in an end-to-end pipeline. 

‣ Learning-based Image Compression 
‣ RNN-based (Toderici et al, ’15, ’16’, ’17, etc.) 
‣ GAN-based (Rippel & Bourdev ’17, Augustsson ‘18) 

‣ Task-specific compression (videos, faces, medical imagery)

Results5.

Conclusions & Outlook6.

‣ Training to (1) maximize matching performance while (2) minimizing code 
length and (3) ensuring the binarization-induced error is minimal.

0.92 TiB

‣ The LiDAR matching depicted below is trained to match observations to 
compressed maps, using a learned matching method.

(1) Localization term: Cross-entropy between predicted 3D 
(x, y, yaw) score map and ground truth one-hot offset.

Output of 
Group Softmax

(2) Entropy in the mini batch is a differentiable surrogate of code length. 

(3) Minimize per-pixel entropy to reduce hard binarization-induced error.

Output of Matching Pipeline

167.5

‣ Address his by learning a compression scheme optimal for localization by 
jointly learning localization and compression.
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