Exploiting Sparse Semantic HD Maps for Self-Driving Vehicle Localization

Wei-Chiu Ma*, Ignacio Tartavull*, <u>Ioan Andrei Bârsan</u>*, Shenlong Wang* Min Bai, Gellért Máttyus, Namdar Homayounfar, Shrinidhi Kowshika Lakshmikanth, Andrei Pokrovsky, Raquel Urtasun

* Denotes Equal Contribution

November 6, 2019

Uber

Problem & Motivation

- Self-driving vehicles are complex robotic systems
- **Maps** can improve safety and performance of perception, motion forecasting and planning
- Precise ego-localization is required for using maps

Localization Desiderata

Low **Cost** for Map Building & Storage Real-Time Inference

High **Accuracy** (Centimeter-level)

Problem Statement

- Online localization w.r.t. map
- Sub-meter accuracy
- Vehicle on ground: state = (**x**, **y**, **yaw**)

Proposed Method

Perceived Lanes

Perceived Signs

Longitudinal Information

Input Sensors

Offline: Sign Map Building Process

1) Visual Cue Extraction

Top-Down Signs

Top-Down Lane Distance Map

3) Pose Filter

Dataset

- 312km of driving on multiple US highways
- Challenges:
 - High speed
 - Repetitive structures

Metrics

- Localization accuracy
 - Euclidean distance w.r.t. true pose
- Worst-case behavior critical
 - Report 50th, 95th and 99th percentiles

Experimental Results: Performance

	Longitu	idinal Err	or (m)	Lateral Error (m)		
Methods	Median	95%	99%	Median	95%	99%
Dynamics	24.85	128.21	310.50	114.46	779.33	784.22
GPS	1.16	5.78	6.76	1.25	8.56	9.44
GPS + Dynamics	1.59	6.89	13.62	2.34	11.02	42.34
Ours	1.12	3.55	5.92	0.05	0.18	0.23

Experimental Results: Ablation Study

			Longitudinal Error (m)			Late	Lateral Error (m)		
Lane	GPS	Sign	Median	95%	99%	Median	95%	99%	
\checkmark			13.45	37.86	51.59	0.20	1.08	1.59	
\checkmark		\checkmark	6.23	31.98	51.70	0.10	0.85	1.41	
\checkmark	\checkmark		1.53	5.95	6.27	0.06	0.24	0.43	
\checkmark	\checkmark	\checkmark	1.12	3.55	5.92	0.05	0.18	0.23	

Experimental Results: Storage

Мар Туре	Storage (MB/km ²)	Approximate USA Road Network Storage (TB)
Full point clouds Ground intensity Ours (Signs + Lane Graph)	$1,447.00 \\ 177.00 \\ 0.55$	1,138.47 139.26 0.43

Qualitative Results

Discussion and Future Work

- Complementary semantic cues can enable accurate map-based localization on highways using a fraction of the storage required for traditional HD maps
- Reliable localization in the correct lane on >300km
- 3–4 orders of magnitude less storage than appearance based maps
- Future work:
 - Integrate with compressed appearance maps
 - Re-localization module

Thank you!

FAQ

- Unpainted roads?
 - Road boundaries are still a strong cue!
- Lack of road signs & off-road?
 - Can be mitigated with (compressed*) appearance maps
- Longitudinal error?
 - Safety is much more related to lateral accuracy in the highway scenarios we evaluated.

*) Wei et al., Learning to Localize through Compressed Binary Maps, CVPR '19

FAQ

- What if the maps are out of date?
 - Change detection + mapless driving.
 - No over-reliance on any one sensor or the maps.
- If you want sparse maps, why no visual SLAM/ORB-SLAM, etc.
 - Accuracy still not high enough in the lateral dimension.
- Why not LOAM?
 - We are planning to investigate more advanced LiDAR SLAM methods.