1. Problem and Contributions

Problem
- Most mapping systems assume the environment is static or treat dynamic entities as noise.
- Dense mapping typically requires large amounts of GPU memory.

Contributions
- Online dense mapping system that reconstructs:
 - Environment map
 - Moving objects
 - Potentially moving objects
- Performs low-overhead map pruning to significantly reduce memory footprint.
- Scales to large environments, such as entire neighborhoods.

2. Method

3. Results

- Evaluation performed on the KITTI dataset.
- Use LiDAR as depth ground truth.
- Compare two depth from stereo methods:
- We also show that map pruning can substantially reduce memory usage with only a small loss in map quality.

Additional Information
- Supplementary results as well as the video and source code are available on the project website: andrei-barsan.github.io/dynslam
- The experiments use both ELAS and DispNet to compute depth from stereo because they leverage very different approaches: ELAS is geometry-focused, and DispNet is learning-focused.
- The visual odometry and the sparse scene flow are computed using DAVIS2.
- The semantic instance segmentation is computed using the multi-task network cascade (MTC) architecture.
- Directions for future work include:
 - Improver speed
 - Global consistency (loop closures)
 - More robust vehicle tracking in 3D

Acknowledgements
The authors of this paper would like to thank Forsten Sattler for his valuable support and feedback during the development of the paper and poster.