
Research Collection

Master Thesis

Simultaneous Localization and Mapping in Dynamic Scenes

Author(s):
Barsan, Ioan Andrei

Publication Date:
2017

Permanent Link:
https://doi.org/10.3929/ethz-b-000202829

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000202829
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Simultaneous Localization and
Mapping in Dynamic Scenes

Master Thesis

Ioan Andrei Bârsan

August 27, 2017

Advisors: Prof. Dr. Andreas Geiger, Peidong Liu
Supervisor: Prof. Dr. Marc Pollefeys

Department of Computer Science, Computer Vision and Geometry Group, ETH Zürich

Abstract

The task of dynamic scene understanding is an open problem in com-
puter vision with numerous applications in fields such as autonomous
driving. Many modern three-dimensional reconstruction pipelines do
not account for the presence of dynamic objects in the environment, or
simply treat all measurement associated with such entities as noise. More-
over, many reconstruction pipelines which rely on stereo input are un-
able to effectively deal with the noise typically associated with estimating
depth from stereo.

We present a dense mapping system based on stereo cameras which is
capable of robust operation in complex urban scenes. In addition to build-
ing a static map of its environment, the system also detects, tracks, and
reconstructs the vehicles encountered within, while remaining memory-
efficient thanks to a simple yet effective map pruning technique.

By leveraging instance-aware semantic segmentation, our system is capa-
ble of detecting and reconstructing not just actively moving objects, but
also stationary objects with the potential of becoming dynamic, such as
parked cars, which is highly desirable in many challenging higher-level
tasks, such as urban path planning for autonomous vehicles.

We use the well-established InfiniTAM framework for performing vol-
umetric reconstructions, adapting it to allow effective outdoor opera-
tion, and improving its scalability by reducing its memory requirements
through a map pruning technique based on voxel garbage collection. Per-
forming volumetric fusion for static objects and the environment map is
straightforward, and only requires knowledge of the camera’s egomotion,
which is computed using visual odometry. Measurement registration for
independently moving objects is achieved by tracking their 3D pose over
time using sparse feature correspondences.

We perform a rigorous evaluation of our system’s dense reconstruction
capabilities, 3D pose tracking accuracy, run time, and memory footprint
using sequences from the well-established KITTI odometry and tracking
benchmarks.

Our system is capable of near real-time operation at roughly 2.5Hz, with
the primary bottleneck being the instance-aware semantic segmentation,
which is a limitation we hope to address in future work.

i

Acknowledgements

I would like to express my gratitude to my advisors, Peidong Liu and
Prof. Andreas Geiger for giving me the opportunity to work on a fascinat-
ing topic in what is currently one of the most exciting areas of research:
autonomous driving.

It goes without saying that I am also extremely thankful for my parents’
constant support. I would not be where I am today if it had not been for
them consistently pushing me to stay on track and achieve my potential,
going back all the way to primary and secondary school. Thank you!

I would also like to offer my warm thanks to Alina and Cătălin Tufănaru
for their continued advice, support, and guidance throughout my aca-
demic career.

Finally, I would also like to thank Xinyuan Yu for his technical insights
into SLAM and dense mapping during the early stages of my thesis.

ii

Contents

Contents iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Outline . 3

2 Related Work 5
2.1 Visual Odometry . 5
2.2 Depth from Stereo . 6
2.3 Dense Mapping . 7

2.3.1 Surfel-based Methods . 7
2.3.2 Volumetric Methods . 8
2.3.3 Improving the Scalability of Volumetric Fusion 8

2.4 Tracking . 10
2.5 Semantic Segmentation and Object Detection 11
2.6 Dense SLAM for Dynamic Environments 14

3 Background 17
3.1 Visual Odometry . 17

3.1.1 Feature Matching . 18
3.1.2 Egomotion Estimation . 18

3.2 Depth from Stereo . 19
3.2.1 Overview . 19
3.2.2 Efficient Large-scale Stereo (ELAS) 21
3.2.3 DispNet . 22

3.3 Dense Mapping . 23
3.3.1 Relation to Simultaneous Localization and Mapping . . 23
3.3.2 The KinectFusion Model 25
3.3.3 Voxel Block Hashing . 27

3.4 Instance-aware Object Segmentation 28
3.5 General-Purpose GPU Programming 29

4 Dynamic Reconstruction 33
4.1 Overview . 33

iii

Contents

4.2 2D Object Tracking . 36
4.3 3D Object Tracking . 38

4.3.1 Coarse Alignment using RANSAC 40
4.3.2 Pose Refinement Using Direct Image Alignment 41

4.4 Volumetric Fusion in Dynamic Environments 41
4.5 Map Regularization . 43

5 Experimental Results 49
5.1 Reconstruction Quality . 52

5.1.1 Methodology . 52
5.1.2 Experimental Results on the KITTI Odometry Sequences 55
5.1.3 Experimental Results on the KITTI Tracking Sequences 58

5.2 Map Regularization . 61
5.3 Tracking Accuracy . 69
5.4 Ablation Studies . 71

5.4.1 Reduced Spatial Resolution 71
5.4.2 Reduced Temporal Resolution 77

6 Conclusions and Future Work 79
6.1 Conclusions . 79
6.2 Future Work . 80

6.2.1 Performance Improvements 80
6.2.2 Uncertainty Propagation 80
6.2.3 3D Pose Estimation . 80
6.2.4 Mapping . 81
6.2.5 Evaluation . 81
6.2.6 Segmentation . 82

Bibliography 83

iv

Chapter 1

Introduction

Over the course of the past two decades, the field of autonomous driving has
undergone a dramatic evolution, propelling itself from laboratories and ex-
perimental tracks to real-world cities and highways. Promises of lower traffic-
related fatalities, reduced congestion, and improved fuel-efficiency have at-
tracted significant amounts of attention to this field, from academia and the
industry alike.

Nevertheless, despite the field’s rapid evolution, numerous open problems
still remain on the path towards full automation. Examples include robust-
ness to adverse weather conditions, the ability to understand and respond to
nonverbal cues from pedestrians and law enforcement officers, as well as the
task of motion planning in busy urban areas with large volumes of traffic,
poor visibility, and unpredictable drivers.

While systems capable of reliable operation on highways and country roads
have been available for decades, starting with the ALVINN project from
1989 [60], fully autonomous driving in urban environments is a considerably
more challenging task. Reasons for this include reduced GPS accuracy due
to interference, increased occlusion from buildings, vegetation, and traffic,
disruptions cause by, e.g., construction work, and busier streets with unclear
dynamics.

In this work, we direct our attention to the challenges associated with ur-
ban autonomy, focusing on the task of building detailed and reliable maps
of dynamic environments such as busy roads and intersections. To this end,
we develop DynSLAM, a dense mapping system capable of separately recon-
structing both the static environment, as well as the vehicles within. This
allows our system to accurately compute the static map, without the risk
of corruption caused by moving objects. Moreover, the dense 3D models of
the objects in the environment can be leveraged to improve the accuracy of
components such as object tracking and motion planning.

1.1 Motivation

Despite their significant potential for positive social impact, the development
and adoption of self-driving technologies is often still limited by the asso-

1

1. Introduction

ciated costs, given that most such systems rely on expensive sensors, such
as RADAR or LIDAR. In contrast, high-resolution color cameras can be or-
ders of magnitude cheaper, while also providing richer information about
the environment. Moreover, cameras have higher vertical resolution than
sensors such as LIDAR, and are more robust in detecting reflective and semi-
transparent surfaces. The field of camera-based mapping is therefore of great
interest due to its potential to reduce the costs of autonomous vehicles, mak-
ing them accessible to a wider audience.

While numerous existing mapping1 systems are capable of operating within
dynamic environments, they typically achieve this robustness by treating sen-
sory input associated with dynamic objects as noise, and ignoring it in order
to preserve the consistency of the static map (e.g., [72]).

Nevertheless, this process discards valuable information about the dynamic
objects in an environment. While considerably more challenging than simple
2D tracking alone, building internal representations of the observed dynamic
objects can substantially improve the performance of various other compo-
nents:

• Densely reconstructing dynamic objects can allow the system to more
accurately track them, by enabling it to reason about their exact 3D
shape and predict their pose in new frames accordingly.

• Knowledge about the shape of the tracked objects can also improve
the accuracy of motion planning, by enabling the autonomous agent to
more accurately reason about the future occupancy of its environment.

• The availability of object reconstructions can enable realistic visualiza-
tions for, e.g., evaluating an autonomous vehicle’s path planning pro-
cess in a busy intersection, by using 3D models from the actual scene
to represent other cars, as opposed to placeholder boxes or pre-defined
CAD models.

While some existing SLAM systems do attempt to tackle the problem of re-
constructing both static and dynamic objects, they either do it for robots
constructing 2D LIDAR or RADAR-based maps [72, 6], do not produce dense
reconstructions [65], or are unable to operate in (even near-) real-time [33, 36].

Other systems [2, 16] are constrained to low-dynamic environments, that is,
environments which are expected to slowly change over time, but in which
no directly observable motion is present. While being efficient at object iden-
tification through change detection, these systems are nevertheless still not
suitable for high-dynamic applications such as autonomous driving.

Thorough comparisons of our work to the aforementioned systems, as well
as to many others, will be presented in Chapter 2.

1.2 Contributions

The main goal of this thesis is the design, implementation, and evaluation
of an outdoor dense mapping system capable of recovering both a map of

1This also includes Simultaneous Localization and Mapping (SLAM) systems, but in this
work we focus on the mapping component. See §3.3 for more information.

2

1.3. Outline

the static parts of the environment, as well as separate 3D models of the
potentially dynamic objects present in it, while operating in near real-time
using stereo input.

Our contributions are therefore threefold. First, we design and implement an
outdoor dense mapping pipeline by extending the existing InfiniTAM volu-
metric reconstruction system [38], originally designed for indoor operation.

Second, we use instance-aware semantic segmentation to detect potentially
dynamic object instances such as cars, leveraging the sparse scene flow to rea-
son about their 3D motion, and reconstruct them separately from the static
map. Unlike most other dense reconstruction systems designed for operation
in dynamic environments [33, 82, 39], our semantics-based approach ensures
that the system is also aware of objects which are static, but likely to start
moving in the near future. This opens up the potential for advanced applica-
tions such as urban motion planning and predictive obstacle avoidance.

Finally, we show how the memory efficiency and fidelity of the reconstruc-
tions can be improved by extending an existing map pruning technique based
on voxel garbage collection to tackle reconstruction artifacts resulting from
imprecise estimation of depth from stereo. To the best of our knowledge, our
work is the first to leverage an active map pruning technique in the context
of outdoor stereo-based reconstruction.

1.3 Outline

The remainder of this work is structured as follows: First, Chapter 2 covers
related work, showcasing similar dense mapping pipelines, and highlighting
the advantages and disadvantages of our system in relation to them. We
also use this chapter to motivate our choices for certain components of our
pipeline, such as using Efficient Large-scale Stereo [20] for disparity map com-
putation, or the Multi-task Network Cascade neural network architecture [13]
for instance-aware semantic segmentation.

Afterwards, Chapter 3 provides an overview of the core concepts used in this
thesis, such as visual odometry, disparity estimation, dense mapping, and
semantic segmentation.

Chapter 4 focuses on the core contributions of this work, describing how
dynamic objects are detected, classified, tracked, and reconstructed on the
fly. The second part of this chapter covers the map regularization used in our
system, which is an enhanced version of the voxel garbage collection presented
in [55], adapted for finer-grained map cleanup and improved scalability.

Chapter 5 presents a series of experiments on the KITTI odometry and track-
ing benchmarks [19], comparing various configurations of our system. We
analyze the accuracy and runtime of our system, as well as various trade-offs
which can be made, such as lowering the resolution of the input or the fre-
quency of the semantic segmentation in order to increase the speed of the
pipeline, albeit at the cost of reduced reconstruction accuracy.

Finally, Chapter 6 concludes our work, summarizing its contributions and
results, and presenting several possible avenues for improvement, such as

3

1. Introduction

adding support for loop closure detection and global map optimization, us-
ing multi-frame feature tracking for better 3D object tracking, or detecting
moving objects in a more generic manner, without relying entirely on single-
frame semantic information.

4

Chapter 2

Related Work

In the recent years, there has been growing interest in the field of autonomous
driving, both in academia, and in the industry. Consequently, there is a vast
body of recent and ongoing research in related fields, such as stereo vision,
dense mapping, visual odometry, and object detection.

In this chapter, we provide an overview of the parts of this research most
relevant to our work. We start by covering related work in Visual Odometry
(§2.1), Depth from Stereo (§2.2), Dense Mapping (§2.3), Tracking (§2.4), and
Semantic Segmentation and Object Detection (§2.5), motivating our choices
for the respective DynSLAM pipeline components where applicable. Follow-
ing this, in §2.6, we present several state-of-the-art dense SLAM systems de-
signed to operate in dynamic environments, contrasting them with our own
work, and highlighting the strengths and weaknesses of every approach.

2.1 Visual Odometry

ORB-SLAM2 [51] is a stereo extension of the original ORB-SLAM system [50],
which leverages ORB (Oriented FAST and Rotated BRIEF) features for robust
visual odometry, as well as other components such as relocalization and loop
closure, which are not strictly related to our work. Thanks to the fact that
ORB features are fast to compute and compare, their system is capable of
running in real time on a standard CPU.

Geiger et al. [21] present libviso2, an efficient stereo-based visual odom-
etry library which uses RANSAC to achieve robustness to outliers. Their
approach is based on frame-to-frame tracking of simple blob and corner fea-
tures. The objective function used for estimating the relative camera pose
between two frames is formulated based on the sum of squared reprojection
errors of 3D points triangulated from the previous stereo frame into the cur-
rent left and right images. The authors leverage their proposed visual odom-
etry method for building dense 3D reconstructions of urban environments,
but without accounting for the presence of dynamic objects.

FOVIS [31] is a visual odometry method for RGB-D sensors based on FAST
feature correspondences. It leverages both color and depth map features to
estimate the camera egomotion, and is capable of running in real time on

5

2. Related Work

low-end hardware. The system operates in a hierarchical manner, first com-
puting a coarse estimate of the rotation using a simple direct image alignment
method, followed by the sparse feature matching and final motion estimation
stages.

While important, the visual odometry component is not essential for the
scope of this work, given that our focus is on the mapping and reconstruc-
tion aspects. During prototyping and early experiments, we noticed that
while global map consistency is a major challenge which we hope to address
in future work, the frame-to-frame accuracy of the visual odometry does not
have a strong influence on the local fidelity of the reconstructions. Concretely,
we compared reconstructions computed using Geiger et al.’s [21] method to
ones computed using ground truth pose information and found essentially
no difference in quality, apart from the impact of drift, which only affects the
map at a very large scale, without leading to loss of detail or significant dis-
tortion. Therefore, we have chosen to use libviso2 in our pipeline, since it
is a simple, well-established, and efficient visual odometry library. Moreover,
while estimating the visual odometry, the library also computes the sparse
scene flow, which can be used later in the pipeline for tracking objects in 3D.
Further details about this method and how it is integrated in our system will
be presented in §3.1.

2.2 Depth from Stereo

Considered to be one of the “classic” approaches to disparity estimation,
Semi-Global Block Matching [30] casts the stereo matching task as a two-
dimensional global optimization problem which it decomposes into multiple
efficiently solvable one-dimensional sub-problems. While GPU-based imple-
mentations of this approach are capable of real-time operation, its accuracy is
far from state of the art, suffering from heavy streaking artifacts and reaching
a error rate of 10.86%1 on the 2015 KITTI Stereo Benchmark [49].

The Efficient Large-scale Stereo (ELAS) system from Geiger et al. [20] first
computes a triangulation of a robust sparse disparity map which it then uses
to guide a second, dense phase. It is able to compute disparity maps on
KITTI frames at roughly 8Hz, without requiring GPU acceleration. While
only achieving an error rate of 9.72% on the KITTI 2015 Stereo Benchmark,
ELAS is capable of producing very sharp disparity maps, which can lead to
high-quality 3D reconstructions in dense mapping applications.

Güney and Geiger [26] propose Displets, a powerful stereo matching tech-
nique which reduces disparity estimation errors typically associated with re-
flective or transparent surfaces by leveraging semantic information and prior
knowledge about object (car) shapes. While being very robust to challenges
such as reflective and transparent surfaces, achieving a score of 3.43% on the
KITTI 2015 Stereo Benchmark, this method is too slow for real-time operation,
requiring 265 seconds to process one stereo pair.

1All reported errors use the D1-all metric, as described in the referenced paper and on
the benchmark webpage, http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?

benchmark=stereo.

6

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

2.3. Dense Mapping

A substantial amount of recent work in disparity estimation is based on neu-
ral networks. Žbontar and LeCun [79] train a neural network to compare
patches for stereo matching. While achieving a high score on the 2015 KITTI
Stereo Benchmark, with an error rate of just 3.89%, the method still produces
artifacts around reflective and transparent areas, which are very common in
autonomous driving applications. Moreover, inference time is still 0.8 sec-
onds even when using the ‘fast’ parameter configuration, which is problem-
atic for our near real-time operation goals. The SGM-Nets approach of Seki
and Pollefeys [64] is able to outperform Žbontar and LeCun’s method on the
KITTI 2015 Stereo Benchmark, achieving 3.09% error, but requires 67 seconds
to process one frame on the GPU.

The DispNet architecture presented by Mayer et al. [47] simply formulates dis-
parity estimation as an end-to-end learning task, using an encoder-decoder
architecture to directly compute dense depth maps from stereo pairs. They
bootstrap their learning procedure using a novel synthetic dataset and fine-
tune on KITTI training data, achieving a D1-all score of 4.34% on the 2015
Stereo Benchmark, but with a much shorter inference time than the other
methods: just 0.06 seconds using an nVIDIA Titan X. Moreover, this method
produces far fewer unwanted disparity artifacts near reflective or transparent
surfaces than either MC-CNN or SGM-Nets.

Given our emphasis on real-time dense vehicle reconstructions, we prefer
methods which are computationally fast and robust to reflective and trans-
parent surfaces. In our work, we experiment with both Efficient Large-scale
Stereo and DispNet. We choose these methods because of their fast run time,
being able to run at 8Hz and 25Hz, respectively, their high performance on
the 2015 KITTI Stereo Benchmark, and their open-source availability.

2.3 Dense Mapping

In this section, we present the state of the art in real-time dense scene recon-
struction, focusing on methods operating in static environments. In §2.6, we
will review systems which also take the dynamics of their environment into
account.

Since the focus of this work is not on loop closure detection and global map
consistency, we direct most of our attention to mapping systems relying ex-
clusively on visual odometry or frame-to-model tracking for camera pose
estimation.

2.3.1 Surfel-based Methods

First introduced by Pfister et al. [59] in the context of computer graphics,
surface elements or surfels are a simple extension of a 3D point, augmented to
also include a radius and a normal, akin to a small disc in space.

Due to their flexibility and potential for representing scenes at varying res-
olutions thanks to their radius parameter, surfels have been the subject of a
substantial body of research in the field of 3D reconstruction [73, 29, 68, 35,
77, 48].

7

2. Related Work

ElasticFusion [77] is a real-time surfel-based dense SLAM system capable
of detecting both local and global loop closures on the fly, enforcing map
consistency by means of a deformation graph. McCormac et al. [48] extend
ElasticFusion with semantic mapping capabilities by also fusing semantic
labelings of the 2D input frames into the 3D surfel-based representation in a
Bayesian manner.

Wilkowski et al. [78] present an efficient method for generating, storing, and
updating surfel maps by leveraging octree-accelerated frustum culling and
replacing the traditional dense ICP-based tracking with a sparse variant.

2.3.2 Volumetric Methods

As opposed to the unstructured representations produced by surfel-based
methods, volumetric ones implicitly encode a regular structure in the repre-
sentation through their grid-based discretization.

One of the first methods using volumetric fusion for real-time scene recon-
struction using a depth sensor was KinectFusion, the seminal work of New-
combe et al. [53], which sparked a large number of follow-up research im-
proving its robustness [74] and scalability [75, 55, 80, 76, 38], or adding sup-
port for reconstructing non-rigid objects [52].

The DynamicFusion system from Newcombe et al. [52] also builds on Kinect-
Fusion, adding support for reconstructing deformable objects, such as human
faces, by jointly estimating a canonical rigid model and a warp field in real
time. MobileFusion [57] is a pipeline similar to KinectFusion that is capable
of running in real time on a mobile phone, performing the reconstructions
from purely monocular input.

2.3.3 Improving the Scalability of Volumetric Fusion

The original KinectFusion system, while being able to produce accurate, ro-
bust 3D reconstructions, was relatively limited in its scale, being constrained
to desktop-sized environments. In the recent years, numerous methods have
been proposed to increase the scale of the supported reconstructions to room-
sized, or even street-sized scenes. Given the importance of supporting large-
scale reconstructions in DynSLAM, we will now provide an in-depth overview
of the possible approaches to achieving this.

Moving-volume representations One of the first works aiming to improve
the scalability of KinectFusion was the Kintinuous system from [75]. While
still relying on a fixed-size grid for performing the depth fusion, their system
is capable of relocating the volume in physical space as the camera moves
through a scene. Voxels which are left behind as the volume moves are con-
verted to a mesh on-the-fly and streamed out to a global polygonal map.
Follow-up work, such as [76], extends the system by adding loop closure de-
tection and the ability to optimize the polygonal map for global consistency.

Octrees Some of the limitations of regular TSDF grids can be mitigated
using an octree representation which allows the resolution of the final recon-

8

2.3. Dense Mapping

struction to adapt based on the quality of the input [80], and to avoid storing
voxels corresponding to empty regions of space.

However, as pointed out by Nießner et al. [55], such approaches require deep
tree structures for representing large scenes, which can negatively impact the
performance of the GPU-accelerated components due to heavily branching
code.

Voxel Hashing A different approach for efficiently representing large-scale
maps is presented by Nießner et al. [55], and relies on a technique called voxel
block hashing. Their method divides the scene into blocks consisting of 8×
8× 8 voxels, which are stored in a compact manner in a hash table. By being
able to avoid storing data for voxels belonging to empty areas of a scene, the
voxel block hashing technique is capable of scaling to large environments,
beyond what is possible with traditional dense grids.

Kähler et al. [38] present the InfiniTAM system, which builds on Nießner
et al.’s work, adding support for visual-inertial tracking, while significantly
improving the system’s performance and portability. InfiniTAM is capable of
running in real time (20Hz) on low-end devices such as an iPad Air 2, while
still being able to take full advantage of dedicated GPUs, and run at over
1.1kHz on an nVIDIA Titan X. Follow-up work from the same authors [34]
extends InfiniTAM with support for submaps and loop closure detection.

BundleFusion [12] also builds on the voxel block hashing framework devel-
oped by Nießner et al., adding online global camera trajectory optimization
performed in a sparse-then-dense manner, with a first pass relying on sparse
SIFT feature correspondences, followed by a second dense pass. The orig-
inal framework is also extended to allow RGB-D frame de-registration, in
addition to registration, effectively allowing entire frames to be deleted and
re-integrated into the map in order to account for camera track adjustments,
e.g., due to loop closure detection. Nevertheless, despite being able to pro-
duce state-of-the-art reconstructions, the system has very high computational
costs, requiring two GPUs for real-time operation.

Due to its high performance and flexibility, as well as its open source avail-
ability and portable code, we have chosen to use InfiniTAM to perform the
volumetric reconstructions for both objects and the static map in DynSLAM.
In practice, we have observed it to perform much better than either Kintinu-
ous [76] or ElasticFusion [77] on outdoor scenes with depth maps computed
from stereo.

Sadly, the implementation of [34] had not yet been included in the public
version of InfiniTAM used during the development of DynSLAM, so the ad-
ditional features present in their work are not present in our final pipeline.
Nevertheless, we are planning to integrate them into our system as part of
future work. The InfiniTAM v3 technical report [61] published in July 2017
presents additional details on the implementation of these extensions.

9

2. Related Work

(a) 3D object models produced from
LIDAR and color data by [28].

(b) 3D object model produced from
monocular video by [40].

Figure 2.1: Examples of 3D reconstructions produced by different tracking
systems. Note that the former approach requires LIDAR, while the latter
does not run online.

2.4 Tracking

With the increasing popularity of autonomous vehicle research, much work
has been devoted to object tracking, due to its importance in obstacle detec-
tion and traffic understanding. Despite not being the primary focus of this
thesis, tracking is still vital for the correct registration of color and depth
measurements across multiple frames, a prerequisite for the volumetric re-
construction of dynamic objects presented in Chapter 4.

Held et al. [28] present an object tracking system leveraging both LIDAR and
color information to track objects at very high frame rates. Unlike most clas-
sic approaches to tracking, the method also builds 3D models of the tracked
objects, in order to increase robustness to occlusions and viewpoint changes.
The tracking performance is ensured by the use of a novel data structure
called annealed dynamic histograms, which allow the system to perform coarse-
to-fine tracking by adjusting the sampling rate of the velocities from the state
space in an efficient manner.

Lebeda et al. [39, 40] present a novel probabilistic approach for tracking and
reconstructing dense 3D models of dynamic rigid objects from unstructured
monocular RGB input, such as motor sports footage. Their key insight con-
sists in casting the probabilistic reconstruction problem as a Gaussian Process
inference task. The domain is defined as the angle of a particular point to the
center of the object, with the radius being the dependent variable. From this
formulation, a mesh can be extracted using MAP. Moreover, the variance at
every point can serve as an indicator of the confidence in the accuracy of the
reconstruction. This leads to a highly robust system capable of tracking and
reconstructing arbitrary rigid objects in unstructured, cluttered, low-quality
RGB video, even across shot cuts. This approach is, however, not without
its limitations. First, performance-wise, the system is not real-time, requiring
several seconds per frame. Moreover, in order to add color information to the
reconstruction, the system needs to perform a second pass through the input
sequence, which would be infeasible in a real-time application. Second, the
framework is limited to reconstructing objects belonging to a star domain2.
While this is a reasonable assumption for small automobiles, it will mean that

2Also known as a star-convex set, a star domain is a set in Euclidean space, centered around
a point x0 such that for every point x in the set, the line segment from x0 to x is also in the set.

10

2.5. Semantic Segmentation and Object Detection

the system will be unable to correctly model more complex moving objects,
such as pick-up trucks.

Sample reconstructions produced by the systems from Held et al. and Lebeda
et al. can be seen in Figure 2.1.

Lenz et al. [41] present a stereo-based system which uses sparse scene flow
to segment an environment into static and dynamic components. They com-
pute a triangulation of scene flow points tracked over five frames, and discard
edges between points with significantly different flow vectors, using Maha-
lanobis distances to account for the depth estimation error model. Moving
objects are detected by performing a connected component analysis on the
resulting scene flow graph. Following this, 3D bounding boxes are fit to the
clusters of scene flow vectors, completing the tracking process.

The work of Choi [10] presents a multi-object tracking framework which lever-
ages long term interest point trajectories for robustness to target drift, casting
the frame association problem as a conditional random field.

Recently, there has been growing interest in applying neural networks to the
field of object tracking. The Deep MANTA system presented by Chabot et
al. [9] leverages deep neural networks to achieve a step up in terms of in-
formation richness, estimating not just the 3D bounding boxes of the tracked
cars, but also their part structure, such as the size and location of their wheels,
hood, top, etc., from monocular video. Byravan et al. [7] also leverage neural
networks for directly estimating SE3 transformations between point clouds.

2.5 Semantic Segmentation and Object Detection

Semantic segmentation and object detection are both well-studied fields of
computer vision with numerous applications in autonomous robotics and
scene understanding.

We now present a brief overview of recent work in both of these areas, moti-
vating our choice to use the Multi-task Network Cascades (MNC) proposed
by Dai et al. [13] in DynSLAM.

Semantic Segmentation The recent years have seen a significant increase in
the accuracy of semantic segmentation methods, a success due in most part
to the resurgence of neural networks. Examples include the works of Long
et al. [43] and Badrinarayanan et al. [3], who augment traditional convolu-
tional neural networks designed for single-output classification to perform
per-pixel classifications by placing them in an encoder-decoder configura-
tion. While the former focuses on adapting multiple classification architec-
tures, such as AlexNet [37] and VGG16 [66], to the fully convolutional frame-
work, the latter focuses on improving the smoothness of the outputs and the
memory efficiency of both training and inference by reusing the max-pooling
elements of the encoder in the decoder, thereby removing the need to learn
dedicated upsampling layers.

Nevertheless, these methods are still computationally expensive, being un-
able to segment video streams in real time without significantly reducing

11

2. Related Work

the resolution of the input. Paszke et al. [58] alleviate this issue with their
ENet architecture, which is capable of processing 1280× 720 input at 46.8 FPS,
compared to SegNet, which only achieves 3.5 FPS on the same resolution and
hardware. They achieve this significant performance boost by applying tech-
niques such as performing feature map downsampling much earlier in their
pipeline compared to other methods, using dilated convolutions to further
increase receptive field sizes, and factorizing convolutional filters.

Object Detection The work of Uijlings et al. [69] is an object proposal gen-
eration method which starts with a superpixel segmentation of an image,
merging the superpixels based on similarity cues until a particular threshold
is reached. The bounding boxes of the resulting segments are computed and
returned as generic object proposals.

The R-CNN proposed by Gurshick et al. [24] represents an extension of typi-
cal object proposal pipelines which also assigns a semantic class label to each
proposal using a convolutional neural network (CNN). The proposals are
generated by an external object proposal algorithm, rescaled to a standard
size, and fed individually to the CNN for classification. The Fast and Faster
R-CNN extensions [23, 63] improve the performance and runtime of the orig-
inal method, with the former reducing training overhead by pre-computing
image feature maps, and the latter further improving performance by also
integrating the object proposal generation into the network architecture.

Instance-aware Semantic Segmentation Originally defined by Hariharan
et al. [27] as simultaneous detection and segmentation, the problem of instance-
aware semantic segmentation combines the semantic aspects of classic im-
age segmentation methods with object detection, extending the notion of
semantic segmentation to also include object instance information. In their
work, Hariharan et al. present an extension of the R-CNN framework which
operates on segmented object proposals, instead of box proposals. How-
ever, much like R-CNN, their work also requires numerous separate CNN
passes at inference time, which leads to large computational costs, making
the method unsuitable for real time operation (for instance, the object seg-
ment proposal component alone takes 30 seconds for a single image).

Dai et al. [13] formulate the semantic object detection problem as an end-to-
end learning task, using a three-level cascade architecture to generate box
proposals, to refine the proposals into pixel-wise instance masks, and, finally,
to assign them a semantic label. Thanks to this unified framework, their
method is able to perform the instance-aware segmentation task roughly two
orders of magnitude faster than previous approaches such as [27], being able
to segment and label object instances in less than 300ms on modern hard-
ware3.

In DynSLAM, it is necessary to both detect and classify objects, in order
to track just those which have the potential to be dynamic (e.g., cars and
pedestrians, but not tables), and to only attempt to reconstruct objects which
are (mostly) rigid, such as cars, but not pedestrians.

3While their paper mentions inference times of 360ms, advances in GPU processing power
since its publication have reduced it to less than 300ms at the time of writing.

12

2.5. Semantic Segmentation and Object Detection

(a) The original RGB frame from the left camera.

(b) Standard semantic segmentation produced using the classic Seg-
Net [3] architecture. Note how there is no distinction between differ-
ent objects of the same class (cars are dark blue), with the multiple
cars being identified as a single blob of “car” pixels in the resulting
segmentation.

(c) Instance-aware semantic segmentation computed by the
MNC [13] architecture. Note that while the segmentation is not
dense, and e.g., background pixels are not labeled, the different ob-
ject instances are well-separated and labeled semantically.

Figure 2.2: A comparison between the output of a semantic segmentation
pipeline and a semantic object detection one.

When performing 3D object reconstruction, accurate silhouettes of the target
objects are necessary. Relying simply on bounding boxes for segmenting re-
constructable objects would introduce too many artifacts in the reconstructed
models, while also removing more information than necessary from the static
map. Moreover, simple semantic segmentations of the input are not sufficient,
since they do not carry with them information on specific object instances,
causing separate objects belonging to the same class to be identified as a
single blob. This limitation is highlighted in Figure 2.2.

We have therefore chosen to use the Multi-task Network Cascades (MNC)
from Dai et al. [13] as the semantic object detection component of DynSLAM,
due to the method’s ability to segment and classify object instances, while
also being near real-time in terms of computational efficiency.

13

2. Related Work

Table 2.1: A brief overview of the features present in the related dynamic
SLAM systems described in this section. A tick mark represents full support
for a particular feature, while a tilde represents limited support. A system
counts as building a dense map if it produces it on the fly, without requiring
any post processing. We consider a system to be near real-time if it can
process input in an online manner, and at a frequency of at least one frame
per second. A “camera-only” system does not rely on additional sensors such
as LIDAR for performing the reconstruction.

D
en

se
M

ap
s

(N
ea

r)
R

ea
l-

ti
m

e

O
ut

do
or

O
bj

ec
t

Tr
ac

ki
ng

O
bj

ec
t

D
en

se
R

ec
on

st
ru

ct
io

n

Se
m

an
ti

c
C

ue
s

La
rg

e-
sc

al
e

C
am

er
a-

on
ly

A
ct

iv
e

N
oi

se
R

ed
uc

ti
on

Reddy et al. [62] X X X X ∼ X

Vineet et al. [70] X X X X X X

KinfuSeg [82] X X ∼ ∼ X

Kochanov et al. [36] X X X ∼ X X X

Jiang et al. [33] X X X X

Faeulhammer et al. [16] X ∼ X X

Co-Fusion [46] X X ∼ X X X X

Ours X X X X X X X X X

2.6 Dense SLAM for Dynamic Environments

This section covers several related works which aim to operate in dynamic
environments, tracking and, in most cases, also reconstructing the moving
objects within.

Table 2.1 shows an overview of the systems which will be presented in the
remainder of this section.

In their 2015 paper, Reddy et al. [62] describe a stereo-based SLAM pipeline
capable of both building dense maps of the static environment, as well as
tracking the dynamic objects within. A key aspect of their system is the fact
that it is capable of enforcing global consistency in the map by using bundle
adjustment, ICP-based visual odometry, and a series of semantic cues based
on TextonBoost. However, the scale of the final reconstructions is relatively
limited, with the longest showcased sequence consisting of just 212 frames
from a KITTI video sequence, i.e., a little over 21 seconds. The system also
does not densely reconstruct the dynamic objects which it tracks. The paper
does not provide any details on the run time of the system.

Vineet et al. [70] describe an extension of Nießner et al.’s voxel hashing frame-
work [55] capable of generating semantically labeled maps from stereo input.
The system is made robust to potentially dynamic objects, such as cars, by

14

2.6. Dense SLAM for Dynamic Environments

means of semantic cues; areas of the map which belong to potentially dy-
namic classes, such as “car” or “bus,” are updated more aggressively when
new measurements are received, thereby enforcing the overall consistency
of the map, preventing dynamic objects from corrupting it. The system is
capable of running in near real-time, but does not track or reconstruct the
dynamic objects from the environment.

KinfuSeg [82] is an extension of the KinectFusion pipeline which increases
its robustness to dynamic objects, separately reconstructing the static and
dynamic parts of a scene. The system, however, suffers from the same scale
limitations of the original KinectFusion work, being unable to reconstruct
environments larger than a single room. Moreover, the system is limited
to reconstructing a single dynamic object, being unable to separate multiple
dynamic objects based on e.g., their motion or aspect. Finally, being based
on an active RGBD sensor, the system is confined to indoor environments,
limiting its applicability in the field of autonomous outdoor robotics.

Kochanov et al. [36] use stereo cameras to build a dense semantic map of
an environment which also incorporates information on the dynamics of the
scene. Their method is centered around augmenting a sparse voxel grid to
also include a running estimate of each cell’s scene flow, in addition to the
semantic and occupancy information. The map updates occur in a Bayesian
fashion: at every stage, the occupancy and semantic information from the
map is first propagated using a motion model based on the known scene
flow. Afterwards, the new measurements (occupancy, scene flow, semantics)
are fused into the map, and global consistency is enforced by means of a
3D CRF. The voxel grid is represented using voxel hashing, thus enabling
the system to scale to very large scenes. However, the described pipeline
does not run in real time. Among its components, it leverages the dense
scene flow method of Vogel et al. [71], which can take up to 300 seconds for a
single frame. Moreover, by representing the 3D map using an occupancy grid,
the system forfeits the many advantages of more elaborate representations,
such as TSDF- or surfel-based ones, leading to less smooth, lower-quality
reconstructions.

Jiang et al. [33] also present a SLAM system for dynamic environments which
reconstructs both the static map, as well as the dynamic objects within. The
strength of this system lies in its novel approach to motion segmentation,
which performs 3D sparse subspace clustering on the trajectories of keypoints
in 3D, grouping together those features which exhibit similar motion, and
using region growing to densely segment the full moving objects. Their work
is somewhat similar to ours, save for three major differences. First, their
system requires LIDAR input, in addition to RGB, limiting its applicability
in low-cost robotics. Second, the system does not run in real time, requiring
roughly ten seconds to process one frame, albeit using just a single CPU
core. Third, the scalability of the system in terms of scene size is limited; the
longest sequence presented in their paper consists of just 70 frames, i.e., seven
seconds of actual driving time. It is unclear whether the presented pipeline is
able to scale to larger environments without vastly increased computational
costs.

Ambrus et al. [2] and Faeulhammer et al. [16] focus on RGB-D mapping

15

2. Related Work

and object detection in low-dynamic environments. In this context, a low
dynamic environment is one where all changes are expected to occur out-
side the observer’s view, i.e., the system is not robust to witnessing motion,
but can recognize rooms upon revisiting them, even if e.g., the layout of the
furniture has been changed. The former work simply leverages change detec-
tion between room visits to identify objects which have been moved such as
chairs or pillows. Its follow-up by Faeulhammer et al. adds another layer to
the system, enabling the robot to not just detect (low-)dynamic objects, but to
also deliberately plan routes to perform additional scans in order to capture
previously unseen sections of the detected objects.

Co-Fusion [46] is another real-time dense mapping system capable of recon-
structing both a static background map, as well as the dynamic objects from
a scene. The paper presents a real-time pipeline which can segment and
track dynamic objects based on either motion or semantic cues, and recon-
struct them separately, using a surfel-based representation. While most of
the experiments are performed on indoor RGBD sequences, both real-world
and synthetic, some limited results on the Virtual KITTI dataset [18] are also
presented. However, both the quality and the scale of the reconstructions
performed on the Virtual KITTI data are limited, in comparison to the indoor
sequences. Moreover, the authors do not address the problem of noise re-
duction for 3D reconstruction, which is an important consideration for dense
mapping of outdoor environments.

16

Chapter 3

Background

This chapter covers the prerequisites for understanding the components which
make up the DynSLAM system. While most notions are presented quite
briefly, an effort is made to point the interested reader towards further read-
ings wherever appropriate.

3.1 Visual Odometry

A key aspect of any autonomous robotic platform is its ability to sense its own
motion, or egomotion. While dedicated solutions for directly sensing egomo-
tion do exist, for example in the shape of inertial navigation systems, which
leverage GPS, inertial measurement unit (IMU), and wheel sensor informa-
tion to estimate a robot’s motion, they are typically expensive and subject to
drift, while also being limited in the range of environments in which they
can operate.

Visual odometry [56] is an alternative to pose estimation using sensors such
as the INS. Instead of requiring IMU, GPS, or wheel encoder information,
visual odometry estimates a robot’s motion purely based on its visual input,
without requiring prior knowledge about the structure of the scene.

In the present work, the egomotion is estimated using the libviso2 library by
Geiger et al. [21]. As motivated in §2.1, their approach provides a good trade-
off between speed and accuracy, as well as robustness to outliers. Moreover,
since the method uses sparse scene flow as its input, we can later reuse this
computation when analyzing the 3D motion of the objects present in the
environment.

libviso2 estimates the six-degree-of-freedom relative pose of a calibrated
stereo camera between two consecutive frames by minimizing the reprojec-
tion error of 3D points triangulated from the previous stereo pair onto the
current one.

At the heart of the method lies a simple but effective system which computes
four-way feature matches between the previous and current left and right
frames. Given that these matches correspond to the positions of 3D points
at times t− 1 and t, they represent a sparse version of the scene flow. The

17

3. Background

matched sparse scene flow points are then used to minimize the aforemen-
tioned error function within a RANSAC framework, which conveys robust-
ness to outliers.

3.1.1 Feature Matching

libviso2 detects keypoints using simple 5× 5 blob and corner detectors. The
feature matching is performed by comparing Sobel filter responses centered
around the keypoints using the sum of absolute differences as an error met-
ric. This avoids the high computational costs typically associated with more
elaborate descriptors such as SIFT [44] and SURF [5], which are also not nec-
essary given the small viewpoint difference between consecutive frames, and
the left and right cameras.

In order to compute the sparse scene flow at time t, features are matched
between both the current left and right, as well as the left and right frames
at time t− 1. Matching starts in the left frame at time t. Every feature is first
matched to the best candidate in the current right frame. Then, the match
is itself matched to the best candidate in the previous right frame, which is
then matched with the previous left frame, and then back with the current
left frame. Features for which the circular matching reaches the same place
it started are considered accepted.

The circular matches (sparse scene flow) are then used for egomotion esti-
mation. They are also stored for later use in the 3D object pose estimation
component of DynSLAM.

3.1.2 Egomotion Estimation

The egomotion estimation is cast as an optimization problem tasked with
reducing the sum of squared projection errors of the 3D points triangulated
from the previous frame, projected into the current one. The objective (loss)
function therefore takes the shape of

L (X; r, t) =
N

∑
i=1

∥∥∥x(l)i − π(l) (Xi; r, t)
∥∥∥2

︸ ︷︷ ︸
Squared reprojection error
into the current left frame.

+
∥∥∥x(r)i − π(r) (Xi; r, t)

∥∥∥2

︸ ︷︷ ︸
Squared reprojection error

into the current right frame.

, (3.1)

where Xi represents the 3D position of the ith point triangulated from its two
correspondences in the previous frame (out of N total matched keypoints),
x(l)i and x(r)i are the 2D positions of that same keypoint in the current left
and right frames, and π(l) and π(r) are matrices which project 3D points
from the previous frame onto the current left and right image planes, respec-
tively. r and t are the rotation and translation components of the six-degree-
of-freedom relative pose between two frames. Note that there is no scale
ambiguity due to the stereoscopic nature of the input. The optimal transfor-
mation (r∗, t∗) between the previous and the current frame is then estimated
using the Gauss-Newton method to minimize the above objective function:

(r∗, t∗) = arg min
r,t

L (X; r, r) . (3.2)

18

3.2. Depth from Stereo

In order to increase its robustness to outliers, this method is then wrapped
in a RANSAC framework which repeats the (fast-converging) optimization
procedure for k different samples each consisting of three four-way corre-
spondences. In practice, we set k to 200, as this provides a good trade-off
between efficiency and accuracy for our dense fusion method.

The output of this method is the relative pose of the camera between two
consecutive frames, i.e., its egomotion. This result is then passed on to the
rest of the pipeline, namely the dynamic object tracking, where knowledge
of the egomotion is required in order to establish an object’s independent
motion, and to the static map fusion, which requires the camera’s most recent
pose in order to properly fuse the latest measurements into the global map.

It is worth noting that libviso2 is a pure visual odometry library, and does
not perform loop closure detection or any global pose graph optimization.
Given that the primary focus of this work is the reconstruction of street-
sized environments and of the objects within in a single pass, using pure
visual odometry for pose estimation is sufficient. For possible ways of adding
support for relocalization, loop closure, and globally consistent mapping to
DynSLAM, please see Chapter 6.

3.2 Depth from Stereo

3.2.1 Overview

The task of estimating the depth of every pixel seen by a camera in a scene,
using nothing other than the camera’s color input is one of the fundamental
problems of computer vision. While this problem has been studied widely
in various forms, using single-, two-, or even multiple-view geometry, for the
scope of this work we will be focusing on the two-view case, also known as
stereoscopic (or stereo) vision.

The stereoscopic depth estimation problem consists in computing a depth
map for a pair of images by associating a depth value to every pixel in the two
images. In this scenario, as opposed to structure from motion, for instance, it
is assumed that the stereo rig is calibrated, i.e, both the intrinsic matrices of
the two cameras, as well as their relative pose are known.

Depth cannot be unambiguously extracted from a single traditional camera.
This is because of the fundamental limitations of projective geometry. As
such, a monocular camera can be seen as a “bearing sensor”, measuring not
the distances to various features in a scene, but their angles with respect to
the camera’s optical axis.

However, viewing a scene from more than one camera, as is the case in the
stereo vision problem, imposes an additional constraint on the problem, al-
lowing the depth of a 3D point to be recovered, as a function of its disparity:
the distance between the point’s projection in the left and in the right camera
frames.

Figure 3.1 shows a simplified example of depth from stereo, with identical
cameras which are aligned with the x-axis. This enables the depth Zp of a

19

3. Background

Figure 3.1: A simplified geometric example for estimating a pixel’s depth
in the stereo depth scenario. Illustration credit: Prof. Margarita Chli, Au-
tonomous Mobile Robots Lecture Slides, ETHZ, 2016.

pixel p to be estimated as

Zp =
b f

ul − ur
, (3.3)

where b is the baseline of the stereo rig, i.e., the distance between the camera
centers on the x-axis, f , the focal length of two (assumed identical) cameras,
and ul,r the u-coordinates of a 3D point in the left and right images.

Therefore, knowing the cameras’ intrinsic parameters, their relative pose, as
well as the disparity value of every pixel means that a depth map of the
viewed scene can be extracted. However, this raises two further questions:
(1) How are the disparity values computed? and (2) Can this computation be
done efficiently?

The first question can have multiple different answers depending on the de-
sired properties of the resulting depth map. For instance, matching robust
feature descriptors such as SIFT [44] between the two frames can lead to very
accurate results, but can only produce sparse depth maps, which are insuffi-
cient in dense mapping, for example. The alternative is to attempt to match
every pixel in one image to a pixel in the other image by, e.g., comparing their
surrounding image patches using a simple error metric such as normalized
cross-correlation. This technique is commonly referred to as block matching.

While the latter approach can lead to reasonably accurate depth maps which
are much denser than those produced by matching sparse keypoints, the com-
putational costs of finding a match for every pixel in one image can become
overwhelming, growing quadratically as a function of the input resolution,
since in the general case, the best match for a given patch in the left image
can be located anywhere in the right one. This provides a segue into the
answer for the second of the aforementioned questions. The efficiency of the
simple block matching technique can be improved substantially by reducing
the size of the required search area for every disparity. This is performed
through a process known as stereo rectification, which transforms a pair of
images such that the epipolar lines are all parallel and collinear. Stereo (or

20

3.2. Depth from Stereo

(a) A disparity map generated using ELAS.

(b) A disparity map generated using DispNet.

Figure 3.2: A comparison of the disparity maps produced by ELAS and Disp-
Net. Note that qualitatively, the map produced by ELAS tends to be sharper,
while the one produced by DispNet boasts 100% completeness but is sub-
stantially more blurry. The gaps in the former do not pose a significant issue
when fusing information over multiple frames.

epipolar) rectification typically also removes various types of lens distortion
before applying the final affine correction. After the rectification, the block
matching search in the right frame can be performed efficiently along the
same scan line as the original pixel in the left frame.

Nevertheless this technique still assumes a very simplistic geometric model
of the scene, and while efficient, it can still lead to noise and gaps in the
resulting depth maps.

There are numerous ways of improving this naive solution, as described
in Chapter 2. As motivated in that chapter, both ELAS [20] and DispNet [47]
will be evaluated in this work. A comparison of the disparity maps produced
by these two methods can be seen in Figure 3.2.

3.2.2 Efficient Large-scale Stereo (ELAS)

ELAS is a disparity estimation technique developed by Geiger et al. [20]
whose source code is openly available as libelas1. It can be seen as a hy-
brid depth estimation method, leveraging both sparse and dense matching
in order to produce its final result.

1http://www.cvlibs.net/software/libelas/

21

http://www.cvlibs.net/software/libelas/

3. Background

This method solves much of the ambiguities typically associated with stereo
matching by first computing a high-quality sparse “support” depth map by
robustly matching keypoints between the two images. It then computes the
Delaunay triangulation of the support keypoints, using it to guide the com-
putation of the dense result.

Concretely, ELAS formulates the dense depth estimation as a Bayesian infer-
ence problem, with the prior proportional to a combination of a uniform dis-
tribution and a Gaussian distribution parameterized by the distance between
the output point and the support points. The likelihood term is expressed as
a Laplace distribution parameterized by the `1-distance between the descrip-
tors of two image patches.

The resulting disparity map is then computed by performing maximum a
posteriori inference (MAP) in the aforementioned model.

The method runs on a modern CPU in roughly 130ms, or at approximately
8Hz, and can be run in parallel to other components, such as the visual
odometry and the semantic segmentation.

3.2.3 DispNet

Unlike many traditional approaches to disparity estimation such as semi-
global matching, the DispNet method proposed by Mayer et al. [47] uses
an end-to-end neural network architecture to directly estimate full-resolution
disparity maps from rectified stereo input pairs.

DispNet has an encoder-decoder structure, with additional long-range con-
nections between the encoder and the decoder.

The authors present two alternate configurations for depth estimation: one
with an explicit correlation layer, and one without it. In the former version,
the first part of the encoder is bifurcated, and has separate branches for the
left and right frames, while in the latter, both frames are fed together into
the network. The reasoning behind the former version is to encourage the
network to produce meaningful representations of both the left and the right
frame before focusing on the disparity estimation, while the reasoning for
the later is simplicity. The two architectures are presented in Figure 3.3. In
our system, we use the first version, as it performs better than the second one
on the KITTI 2015 stereo benchmark [49].

The network is trained end-to-end on a novel synthetic dataset also intro-
duced in the same paper, and fine-tuned on the training dataset of the KITTI
2015 stereo benchmark.

When compared to libelas as in Figure 3.2, DispNet produces denser, but
less sharp results. It is capable of estimating depth even in the presence
of occlusions, as can be seen behind the tree to the left and the sign to the
right, but it is also susceptible to “hallucinating” geometry in places where
information is scarce, such as the top left portion of the tree.

While computing disparity maps with DispNet is substantially faster than
with ELAS (18Hz vs. 8Hz), doing so requires a GPU, which means that depth

22

3.3. Dense Mapping

(a) The simple version of DispNet. The input images are stacked to form a (width×
hight× 6)-dimensional input.

(b) The correlation-based version of DispNet. The input images are fed separately
to two branches of the encoder as two (width× height× 3)-dimensional inputs, and
their representations are only fused after four layers.

Figure 3.3: The two DispNet architectures for end-to-end disparity estimation
from stereo pairs. The refinement funnel is a placeholder for the decoder half
of the network. Note that this particular example shows optical flow as the
output, but the architecture for estimating disparity is essentially identical.
Illustration from Dosovitskiy et al. [14].

map computations with DispNet cannot happen in parallel to the object de-
tection described later in this chapter. As will be detailed later, this can con-
stitute a rather large disadvantage in terms of overall pipeline performance,
assuming a single-GPU system.

For additional background on deep learning, including architecture types,
optimization, and additional applications, we would like to refer the reader
to [25].

3.3 Dense Mapping

3.3.1 Relation to Simultaneous Localization and Mapping

The simultaneous localization and mapping (SLAM) problem is concerned
with enabling an autonomous agent, such as a robot, to localize itself in an
unknown environment while also constructing a map of it, without leverag-
ing any prior knowledge.

The first formulation of the modern simultaneous localization and mapping
(SLAM) problem dates back to Smith et al. [67], who in 1986 first showed
how increasing correlations between observed landmarks can help reduce

23

3. Background

Figure 3.4: An augmented reality vehicle simulation using a dense map
created by the Dense Tracking and Mapping system [54] to achieve realis-
tic physics. This highlights one of the many possible applications of dense
SLAM systems.

the uncertainty about a robot’s location, and lead to a globally consistent,
reliable map.

In their comprehensive 2006 tutorial, Bailey et al. [4] provide a detailed
overview of the SLAM problem and the main ways of approaching it, fo-
cusing on “classic,” sparse methods.

While traditional SLAM methods represent maps as sets of sparse keypoints
in 3D or keyframes, many modern SLAM systems choose to instead repre-
sent the maps as dense 3D models. Naturally, this requires much more com-
putational power and storage, but can lead to both improved localization
performance, as well as richer maps, which can be leveraged for higher-level
tasks such as simulations, path planning, augmented reality, etc.

A more recent survey from 2015 by Cadena et al. [8] compares many of the
newer, dense methods to the classic methods of the past, highlighting that
despite their higher computational costs, dense and direct methods are gen-
erally more robust to, e.g., featureless environments, with their output maps
being more appropriate for applications such as visualization, simulations,
path planning, etc.

The potential of dense maps was first highlighted by one of the earliest
real-time dense SLAM systems, Dense Tracking and Mapping (DTAM) [54],
which included a realistic physics simulation based on the dense map pro-
duced by the system. An example of augmented reality based on this method
can be seen in Figure 3.4, where a user can control the 3D vehicle on top of
the desk, using the dense reconstruction of the environment to enable realis-
tic collision detection and physics.

24

3.3. Dense Mapping

The release of the Microsoft Kinect SDK in Spring 20112, together with the
increasing flexibility and availability of general-purpose GPU (GP-GPU) de-
vices and frameworks, sparked a host of new research involving dense meth-
ods based on color and depth cameras, commonly referred to as RGB-D cam-
eras.

One of the most influential such works is Newcombe et al.’s KinectFusion
[53], which has paved the way for dozens of papers leveraging its volumetric
map representation, as well as its techniques for applying projective data
association and the iterative closest point (ICP) algorithm for frame-to-model
camera tracking. Similar to DTAM, this system also made heavy use of GP-
GPU, and was able to run in real time.

While much of the work on classic SLAM also covers the global consistency
problem, often using methods such as bundle adjustment to jointly opti-
mize the entire map and all available camera poses, many dense formula-
tions [53, 55, 38, 70] rely exclusively on frame-to-model tracking or pure
visual odometry for pose estimation. In our work we do the same, lever-
aging visual odometry for simple frame-to-frame tracking and focusing on
locally-accurate maps and robust dynamic object reconstructions. The task
of enforcing global map consistency is left as future work (see §6.2).

As motivated in Chapter 2, our reconstruction components are based on In-
finiTAM [38], which extends the original KinectFusion framework by adding
support for voxel block hashing, significantly improving its scalability to
large scenes. For the remainder of this section, we will focus on InfiniTAM,
describing the KinectFusion model it is based on, and presenting further de-
tails about voxel block hashing.

3.3.2 The KinectFusion Model

Based on earlier work by Curless and Levoy [11], the volumetric fusion model
used by KinectFusion has been at the heart of many subsequent works thanks
to the flexibility and robustness of its tracking, data association, and volumet-
ric fusion components. We will focus on the latter two since they are the most
relevant to our work, given that we rely on a sparse method for the camera
tracking, as described in §3.1.

One of the key insights of the KinectFusion model is its map representation,
which is based on a truncated signed distance function (TSDF). As illustrated
in Figure 3.5, the signed distance function encodes the distance to the closest
represented surface at every point in space, with positive values being associ-
ated with the exterior of a surface, and negative ones with its interior. This is
known as an implicit surface representation, as it implicitly encodes the location
of a surface at its zero level set. The size of the discretized cells dictate the
resolution of the reconstruction.

Formally, a signed distance function is a function

S : R3 → R, S(p) =

{
−d, p ∈ Volume

d, p 6∈ Volume
, (3.4)

2https://www.microsoft.com/en-us/research/blog/mixing-it-up-the-kinect-for-windows-sdk/

25

https://www.microsoft.com/en-us/research/blog/mixing-it-up-the-kinect-for-windows-sdk/

3. Background

Figure 3.5: A visualization of a discretized truncated signed distance function
(TSDF) representing a 2D line implicitly as its zero-crossing. The value of the
function is positive outside the represented shape, and negative inside it,
with the absolute value being equal to the distance to the nearest point of the
surface. Illustration from Whelan et al. [76].

which maps points p in three-dimensional space to their distance d from the
reconstructed surface.

The truncation limits the maximum value of the encoded distance d, such
that the SDF is only defined in a finite band around the true surface, |d| ≤ µ.
The parameter µ is generally selected as a function of the expected noise
magnitude.

There are several advantages to using a TSDF for three-dimensional recon-
struction over a classic occupancy grid. First, the TSDF allows the encoded
surface to be reconstructed easily via raycasting or marching cubes, without
having to seek a mode of a probability distribution. Second, it allows new
measurements to be integrated more robustly, by essentially functioning as a
“running average” of multiple partially-overlapping observations of the object
being reconstructed. This allows the final reconstruction to be refined over
time, reducing the impact of sensor noise on its quality. And finally, due to its
regular structure, the TSDF representation lends itself well to parallelization,
and is therefore highly amenable to GPU processing, as described in §3.5.

The TSDF representation is updated with the new depth information at every
frame as follows:

• First, the new camera pose is computed, either using a frame-to-model
tracker, like in the original KinectFusion paper, or with a tracker based
on sparse features, like in DynSLAM (see §3.1 for further details).

• Each pixel in the new depth image is mapped to one or more TSDF
cells TSDFd with associated weights Wd, which are typically constant,
or set as an inverse function of the depth.

• The new measurements are then fused into the main volume as follows:
The weight and TSDF values of every voxel p which has a correspond-
ing value in the new measurement are updated in parallel using a run-

26

3.3. Dense Mapping

Figure 3.6: The voxel hashing data structure. Voxel block coordinates are
hashed and used to look up the corresponding entry which, if present, con-
tains a pointer to the appropriate allocated voxel block in the voxel block
array (VBA). Illustration from Nießner et al. [55].

ning average:

TSDFt(p) =
Wt−1(p)TSDFt−1(p) + Wd(p)TSDFd(p)

Wt−1(p) + Wd(p)
, (3.5)

where Wt−1(p) represents the weight currently associated with the TSDF
cell, and Wd(p) the weight associated with the new depth measurement.
Weights are simply accumulated over time, amounting to increased con-
fidence in voxels which are observed over many frames:

Wt(p) = Wt−1(p) + Wd(p). (3.6)

3.3.3 Voxel Block Hashing

KinectFusion operates on dense TSDF volumes, which can be quite wasteful
since in nearly all practical cases, most voxels of a scene correspond to empty
space outside the truncation band, and do not contribute to the reconstruc-
tion. However, due to its inherent structure, the dense volume is unable to
avoid storing these uninformative voxels.

First proposed in the context of dense reconstruction by Nießner et al. [55],
voxel block hashing alleviates this issue by partitioning the reconstruction
into voxel blocks, typically 8 × 8 × 8 voxels in size, which are stored in a
hash table using their location as a key, as illustrated in Figure 3.6. This al-
lows the system to only allocate and process blocks which are known to con-
tain meaningful information, i.e., blocks containing voxels located inside the
truncation band of the reconstructed surface. Voxel block hashing therefore
leads to superior scalability, while retaining the performance and reconstruc-
tion accuracy of the original KinectFusion model.

27

3. Background

The voxel block hash map is accessed as follows: For a given voxel, the loca-
tion of its corresponding block is computed by finding the largest multiple
of eight smaller than each of its coordinates. The voxel block coordinates are
then hashed to an integer key and looked up in the table, iterating over a
bucket’s elements in the (rare) event of a collision. If the block is found, its
corresponding table entry will contain a pointer to the allocated block data.

The InfiniTAM engine from Kähler et al. [38] builds on Nießner et al.’s voxel
hashing scheme, bringing several speed and accuracy improvements to their
framework. InfiniTAM differs from Nießner et al.’s implementation in the
following major ways:

• Unlike the original voxel hashing implementation, InfiniTAM does not
make use of any locks when allocating data in the hash table. This is
motivated by the fact that collisions are extremely rare during alloca-
tion, while also being easy to recover from. This is because it is very
likely that a block whose allocation failed at time t will still be visible
at time t + 1, so its reallocation will be attempted again automatically.

• The raycasting component used in voxel block allocation, tracking, fu-
sion, and visualization is optimized by having an initial step which
pre-computes the visible blocks before performing the main voxel-wise
rendering.

• The system maintains a list of currently visible blocks, significantly re-
ducing the computational costs of the integration and rendering stages.
Newly allocated blocks are always added to the visible list, and the list
is pruned at every frame, removing blocks which are no longer visi-
ble. While the computational costs associated with maintaining it are
negligible, the benefits are considerable, since it allows the system to
only account for visible blocks when fusing information or rendering
the most recent viewport. This can substantially reduce computational
costs in large scenes.

• In addition to CUDA, InfiniTAM also supports hardware acceleration
using Apple Metal.

3.4 Instance-aware Object Segmentation

Object detection is the task of determining the locations and approximate
dimensions of the objects present in a scene, typically in the form of axis-
aligned bounding boxes. Applications of this problem include augmented
reality, sports analytics, surveillance, as well as autonomous robotics. The
task of object detection can also be extended to object segmentation, which is
tasked with locating the precise outlines of the objects present in a scene.

In the most general case, objects are not restricted to a particular class, and
are detected generically based on a set of “objectness” criteria. Alexe et al. [1]
state that an object must satisfy at least one of the following criteria:

• It must have a well-defined, closed boundary.

• It must be different from its surroundings.

28

3.5. General-Purpose GPU Programming

Figure 3.7: An overview of the Multi-task Network Cascade architecture
from [13].

• It may be unique in an image.

However, in DynSLAM knowledge of the semantic class to which a detected
segment belongs is also necessary. This is due to the fact that we are only
interested in objects with the potential to exhibit dynamic motion in common
urban environments, e.g., we are interested in pedestrians and cars, but not
dining tables or chairs.

To this end, we leverage the Multi-task Network Cascades (MNC) architec-
ture developed by Dai et al. [13], which not only localizes and segments
object instances, but also outputs a semantic label for every detection. They
achieve this by using a three-layer cascade of sub-networks for which they
develop an efficient training scheme. The cascade is organized as follows:

1. The first network produces object proposals using a variant of the Re-
gion Proposal Networks used in the Faster R-CNN system [63]. These
proposals take the form of simple bounding boxes, which are refined
in the following stages.

2. The second network processes the bounding boxes produced by the
previous stage together with the existing image features, outputting a
pixel-wise binary instance mask.

3. The third network takes the instance masks, bounding boxes, and im-
age features computed before and assigns the detection one of N + 1
classes, taking all pixels in the window into consideration but giving
more weight to those present in the mask. Here, N is the number of
objects classes, with the extra class representing the background, i.e., a
proposal identified as a false positive.

Figure 3.7 presents a graphical overview of the cascade architecture.

3.5 General-Purpose GPU Programming

The notion of General Purpose Computations using the Graphics Processing Unit,
commonly abbreviated as GP-GPU, refers to using a computer’s dedicated

29

3. Background

graphics processing unit (GPU) for performing computations that are tradi-
tionally handled by the CPU [17].

A GPU typically encompasses several streaming multiprocessors (SMP), each
consisting of hundreds or even thousands of dedicated cores. While the com-
plexity of the individual cores is much smaller than that of a standard (e.g.,
x86) CPU core, the strength of a GPU comes from the sheer number of cores
it contains; at the time of writing, a high-end GPU such as a Titan XpTM

consists of over 3800 cores, two orders of magnitude more than a traditional
CPU. Modern GPUs also have dedicated high-bandwidth memory, separate
from the CPU-accessible RAM.

This specialized architecture can lead to massive speed-ups for data-parallel
computations, such as raytracing or matrix multiplications. A common ex-
ample of the impact of GP-GPU has had on the computer science research
community is the recent success of deep neural networks [37], which was
made possible by leveraging GPUs to accelerate the computationally expen-
sive matrix multiplications associated with both training and inference. Both
DispNet [47], one of the approaches we use for disparity estimation, as well
as the Multi-task Network Cascades [13], leveraged for performing seman-
tic object detection make use of GPU acceleration for efficient training and
inference.

The availability of GP-GPU has also contributed to the growth of dense map-
ping systems, traditionally considered too computationally intensive for real-
time applications. The original KinectFusion pipeline [53] made heavy use
of GP-GPU in both its tracking, and its mapping components, in order to
achieve real-time operation capabilities. DynSLAM also makes heavy use of
the GPU, both directly, for the primary mapping tasks, as well as indirectly,
in its disparity estimation and semantic segmentation components.

CUDA is a GP-GPU framework created and maintained by the nVIDIA Cor-
poration. Due to the wide availability of nVIDIA GPUs, as well as to the
performance and flexibility of the framework itself, CUDA has become the
de facto standard of the GP-GPU world, and is the dominant force in fields
such as dense mapping and deep learning.

In the CUDA framework, the GPU device3 is controlled from a CPU program
which executes operations for GPU memory allocations, memory transfers
between host (CPU) memory and device (GPU) memory, as well as code
execution.

The GPU-specific code takes the form of C-style functions called kernels,
whose execution is controlled by the host program, and which are run in
parallel by the GPU.

The basic workflow associated with CUDA programming is typically as fol-
lows (the associated CUDA API function names, which follow the same pat-
terns as the C standard library, are also presented for reference):

1. Allocate memory on the GPU (cudaMalloc).

3We will assume single-GPU systems for simplicity, but CUDA also supports multi-GPU
configurations.

30

3.5. General-Purpose GPU Programming

2. Copy the input from RAM to the GPU memory (cudaMemcpy).

3. Execute the kernel, specifying the number of threads it should run on.

4. Copy the results of the kernel operation back to RAM for visualization,
further processing, evaluation, storage, etc. (cudaMemcpy).

5. Free the GPU memory (cudaFree).

For example, inputs in DynSLAM can take the form of computed depth maps
for the volumetric fusion, or color images for the semantic segmentation.
Data-parallel operations such as residual calculations, depth fusion, and ray-
tracing take the form of GPU kernels, and are invoked by the host code at
every frame as needed. Finally, outputs such as reconstruction previews and
exported meshes must be copied from GPU memory back to RAM, before
they can be post-processed, evaluated, saved to the disk, etc.

While the InfiniTAM system on which our work is based also supports the
Apple Metal framework, as well as plain CPU operation, we chose to focus
on CUDA when implementing our system. This is both for performance
and practical (availability of CUDA-ready GPUs) reasons. Moreover, both
the semantic segmentation component of our system, as well as one of the
disparity estimation components, DispNet, are based on the Caffe framework,
which only supports CUDA-based acceleration at the time of writing4.

4While an OpenCL (https://www.khronos.org/opencl/) branch of Caffe does exist, it is
experimental, and incompatible with DispNet and the Multi-task Network Cascades implemen-
tations, which are both based on forks of the official CUDA version of Caffe.

31

https://www.khronos.org/opencl/

Chapter 4

Dynamic Reconstruction

4.1 Overview

The primary goal of DynSLAM is to reconstruct all potentially dynamic rigid
objects encountered in a scene, in addition to the static background map. This
ensures that the map remains uncorrupted and suitable for, e.g., relocaliza-
tion, frame-to-model tracking, visualization, etc., while the generated dense
object models can be leveraged to improve tracking and motion prediction,
and to perform higher-level tasks such as path planning.

The current work focuses on generating high-fidelity reconstructions of both
static maps and dynamic objects on long input sequences in a variety of
environments, leaving higher-level applications for future work.

We choose to leverage semantics instead of motion as our primary cue for de-
tecting objects as this allows us to recognize and reconstruct not just moving
objects, but also static ones which have the potential to transition to being
dynamic while being observed, such as parked cars. We use sparse scene
flow to compute the detected objects’ 3D motion which is then compared to
the camera’s egomotion in order to determine whether a particular object is
moving independently. Knowledge of this 3D motion is also required when
reconstructing moving objects, in order to correctly fuse their views from
multiple frames. This process is described in more detail in §4.3.

For the scope of this work, we focus on rigid object tracking and reconstruc-
tion, particularly cars, but the system can be extended to support the recon-
struction of objects belonging to other, possibly non-rigid, classes, such as
pedestrians and cyclists. For more details, please see §6.2 in Chapter 6.

The system is implemented in C++, leveraging CUDA for performing par-
allel GPU programming where appropriate, like for the map regularization
described in §4.5. The source code is available online, at https://github.
com/AndreiBarsan/DynSLAM.

The remainder of this chapter is structured as follows: We begin by briefly de-
scribing each pipeline component, in order to give the reader a sense of how
everything fits together, and what the primary challenges are. In the sections
following that, we delve deeper into the novel components of the pipeline, ex-

33

https://github.com/AndreiBarsan/DynSLAM
https://github.com/AndreiBarsan/DynSLAM

4. Dynamic Reconstruction

In
st

an
ce

 P
ro

ce
ss

in
g

In
st

an
ce

 P
ro

ce
ss

in
g

Pr
ep

ro
ce

ss
in

g

D
ep

th
 fr

om
 S

te
re

o
In

st
an

ce

R
ec

on
st

ru
ct

io
ns

D
ep

th
 fr

om
 S

te
re

o
D

ep
th

 fr
om

 S
te

re
o

nth
 In

st
an

ce
(R

G
B

, D
ep

th
,

S
pa

rs
e

Fl
ow

)

S
ta

tic
(R

G
B

, D
ep

th
)

(1
) I

np
ut

 S
te

re
o

S
eq

ue
nc

e

(2
) D

en
se

 D
ep

th
 M

ap
s

(3
) O

bj
ec

t S
eg

m
en

ta
tio

n

(4
) S

pa
rs

e
S

ce
ne

 F
lo

w

(5
) V

is
ua

l O
do

m
et

ry

In
st

an
ce

 P
ro

ce
ss

in
g

(7
) 3

D
 O

bj
ec

t T
ra

ck
in

g

R
ob

us
t

C
oa

rs
e

R
A

N
S

A
C

(O
pt

io
na

l)
Fi

ne
 D

ire
ct

A

lig
nm

en
t

(6
.1

) M
as

ke
d

S
ce

ne
 F

lo
w

V

ec
to

rs

R
ec

on
st

ru
ct

io
n

(8
) I

ns
ta

nc
e

R
ec

on
st

ru
ct

io
ns

[s
ta

tic
]

[d
yn

am
ic

]

[d
yn

am
ic

]

(9
) S

ta
tic

 M
ap

 R
ec

on
st

ru
ct

io
n

(1
0)

 R
ec

on
st

ru
ct

io
n

R
eg

ul
ar

iz
at

io
n

vi
a

V
ox

el

G
ar

ba
ge

 C
ol

le
ct

io
n

(6
.2

) M
as

ke
d

C
ol

or
 &

 D
ep

th

(6
.3

) S
ta

tic
 C

ol
or

 &
 D

ep
th

C
ur

re
nt

Le

ft
Fr

am
e

C
ur

re
nt

 a
nd

 P
re

vi
ou

s
S

te
re

o
P

ai
rs

C
ur

re
nt

 S
te

re
o

P
ai

rs

C
am

er
a

E
go

m
ot

io
n

In
st

an
ce

Fr

am
es

S
ta

tic

Fr
am

es

C
ol

or
 a

nd
 d

ep
th

 n
ot

as
so

ci
at

ed
 w

ith
 a

ny
 o

bj
ec

t

For each segmented object

Figure 4.1: An overview of DynSLAM’s pipeline.

34

4.1. Overview

plaining them in more detail, highlighting the design decisions which were
made, and discussing the strengths and weaknesses of our approach.

As shown in Figure 4.1, the main components of DynSLAM are the following:

(1) Input The pipeline reads rectified stereo image pairs as input, such as
those from the well-known KITTI Vision Benchmark [19]. No GPS, IMU, or
LIDAR information is required.

(2) Dense Depth Maps The dense depth maps in our pipeline can be com-
puted using either Efficient Large-scale Stereo Matching (ELAS) [20], or the
DispNet neural network architecture [47]. The two methods are described
in detail in §3.2. Their impact on the reconstruction quality is compared
thoroughly in Chapter 5.

(3.1) Object Segmentation The semantic object segmentation is performed
using the Multi-task Network Cascades architecture from [13]. This compo-
nent detects and classifies object instances in an input image, using the 20
labels from the Pascal VOC2012 dataset. The details of this method are pre-
sented in §3.4.

(3.2) 2D Object Tracking The object segmentation component operates on
individual frames. It therefore has no concept of object identity across frames.
Because of this, our pipeline must associate every detection in a new frame to
a track, creating new tracks where appropriate, and accounting for possible
gaps in the tracks due to, e.g., detection failure. We perform this task using
a technique which associates new detections with existing tracks by ranking
them based on the Intersection-over-Union score between a new detection
and the most recent frame in a track. Further details are provided in §4.2.

(4) Sparse Scene Flow Following the method described by Geiger et al. [21],
the computation of the sparse scene flow is based on two-view and temporal
stereo. Namely, simple blob and corner features are matched between the
current left and right frames, and the previous ones, resulting in pairs of 3D
points from consecutive time steps t− 1 and t, i.e., the scene flow.

The sparse scene flow is used both for egomotion estimation in Step (5), as
well as for computing the 3D motion of the objects detected in a scene, in
Step (7). The details of this method are covered in §3.1.

(5) Visual Odometry The vehicle egomotion is computed from the sparse
scene flow using libviso2 (Geiger et al. [21]), which relies on a RANSAC-
based approach to robustly compute visual odometry in environments with
large proportions of outliers, such as dynamic street scenes. As with the
sparse scene flow, the details of this method are covered in §3.1.

(6.1) Instance-specific Scene Flow The scene flow vectors corresponding to
a specific object instance can be computed by simply masking the full-frame
scene flow computed in Step (4) with the detected object’s silhouette.

35

4. Dynamic Reconstruction

(6.2) Instance-specific Color and Depth Similar to the sparse scene flow,
the color and depth frames are also masked using the relevant object silhou-
ettes, yielding instance views. Instance views are “virtual input frames” with
all the information outside an object instance removed. When the instance
views are created, the corresponding segments are also removed from the
original input frames.

(6.3) Static Color and Depth The color and depth parts of the input frame
not associated with any (potentially) dynamic object are considered part of
the static view and are fused into the static map in Step (9). Figure 4.3 shows
detailed examples of static and instance views.

(7) 3D Object Tracking This component estimates each tracked object’s
six-degree-of-freedom 3D motion, which it then compares to the egomotion
computed in Step (5) in order to classify objects as static or dynamic.

A coarse estimate of an object’s 3D motion can be computed from its corre-
sponding scene flow vectors. This part of this process is very similar to the
one used for the visual odometry in Step (5). If successful, this coarse motion
estimate can optionally be used to bootstap a finer method based on direct
image alignment. Both of these techniques are described in §4.3.

(8) Individual Object Reconstructions As described in §3.3, DynSLAM uses
InfiniTAM1 [38] to perform volumetric fusion. Each object reconstruction is
computed in a separate InfiniTAM volume, using its corresponding instance
view as input at every frame. For objects detected as static, this process is
identical to the reconstruction of the static map, relying on the camera’s ego-
motion alone to align the frames, since the object itself has no independent
motion. For dynamic objects, the estimate computed in Step (7) is used.

(9) Static Map Reconstruction The static views from Step (6.3) are aligned
using the visual odometry computed in Step (5) and fused into the static
map. Just like the object reconstruction, the static map reconstruction is also
performed using InfiniTAM. The processes for reconstructing the static map
and the objects are described in detail in §4.4.

(10) Map Regularization The volumetric fusion results can exhibit unwanted
streak-like artifacts, as highlighted in Figure 4.2. This is due to the inher-
ent noise associated with the estimation of depth from stereo, as detailed
in [22, 41]. The artifacts lead to decreased map accuracy and increased mem-
ory usage. We address this issue using a specialized regularization method,
which we describe in §4.5.

4.2 2D Object Tracking

Given that the object segmentation component presented in §3.4 has no con-
cept of inter-frame identity, operating on individual frames, the 2D detec-
tions must be post-processed in order to organize them into tracks. This then

1http://www.robots.ox.ac.uk/~victor/infinitam/

36

http://www.robots.ox.ac.uk/~victor/infinitam/

4.2. 2D Object Tracking

Figure 4.2: An example of the streak-like artifacts produced in 3D reconstruc-
tions by noisy depth maps. This example uses four fused depth frames com-
puted by DispNet, with the maximum depth truncated at 20 meters. Note
the trailing halos behind the two trees on the left side of the image.

allows us to estimate each object’s 3D motion, and to use it to register its
measurements in the same coordinate frame for accurate volumetric fusion.

Due to the high accuracy of the detected object segments in each frame, as
well as the fact that we are not interested in tracking distant objects which are
impossible to reconstruct anyway, we found that a simple approach based on
Jaccard similarity (or Intersection-over-Union) works very well for our pur-
poses. Namely, we use the following formulation for our similarity metric:

J(M1, M2) =
|M1 ∩M2|
|M1 ∪M2|

, (4.1)

where M1 and M2 are the masks of the two segments to be compared.

The 2D track construction proceeds as follows:

• For every new segment detected at time t, find candidate tracks by in-
tersecting the segment’s 2D bounding box with the track’s most recent
bounding box. Tracks with the most recent frame at a time less than
t− 1 are discounted appropriately.

• We then remove candidate (frame, track) pairs whose score is below a
fixed threshold and greedily associate each frame to its highest-scoring
track, ensuring no frame is assigned to more than one track.

We found that for our purposes, matching frames to tracks based on the
bounding box alone was accurate enough. This is also much faster than
performing pixel-wise mask intersections at every frame. In the future, more
elaborate matching techniques such as the MAP multi-frame data association
formulation from [81] could be used to improve the 2D tracking quality.

37

4. Dynamic Reconstruction

Figure 4.3: The static component of the background is separated from the
object instance color and depth frames. On top, we see a sample color frame
where a potentially-dynamic and a dynamic vehicle were extracted from the
static background while below, we see the corresponding extracted frame for
the dynamic vehicle.

4.3 3D Object Tracking

After the 2D tracking concludes, the next step consists in attempting to es-
timate the 3D motion of each object between the previous and the current
frame. This is performed using a coarse-to-fine scheme starting with a fast
sparse RANSAC-based method followed by a finer-grained direct alignment,
initialized using the result of the sparse step, if available.

We use the term instance view to refer to a masked version of an input frame
only containing a particular object’s color, depth, and scene flow information.
When processing object detections with classes that have the potential to be
dynamic, we extract their silhouettes from the input scene flow, depth, and
color frames into new instance views. Their data in the original input is
removed, to ensure that dynamic objects do not corrupt the final static map.

Figure 4.3 shows examples of the color component from the static part of
the input, as well as from one of the instance views extracted from it. Note
that the segmentation is not perfect, and there are still small parts of the
background visible in the car’s frame and vice-versa. However, this is not an
issue, as the volumetric reconstruction is robust to small imprecisions, while
larger ones can still be dealt with effectively in the regularization process
which will be described in §4.5.

For every object instance which has the potential to be dynamic, e.g., a car
but not a dining table, the system attempts to estimate its motion relative to
the camera using a method similar to the visual odometry from [21] which
is described in §3.1. The input to this coarse motion estimation is the sparse

38

4.3. 3D Object Tracking

Successful estimation of
motion AND

motion > threshold

Successful estimation of
motion AND

motion ≤ threshold

Estimation failed for more than kdynamic
consecutive frames

Estimation failed for more than
kstatic consecutive frames

Uncertain Dynamic

Static

Unsuccessful
estimation of
motion

Inactive Track

Object not seen for > kinactive frames

New Track

Figure 4.4: A state diagram for the active tracks in the DynSLAM system.

scene flow contained in the instance view, and originally computed as part
of the visual odometry estimation.

This works by treating the 3D object as static, and attempting to estimate the
motion of a virtual camera around it. If its computation is successful, then
the resulting virtual camera motion is equal to the inverse of the object’s own
motion, expressed in world coordinates.

DynSLAM can label active object tracks as uncertain, dynamic, or static de-
pending on the result of their 3D motion estimation. If the coarse estimation
of an object’s motion is unsuccessful, such as when the object is too distant
for its motion to be accurately estimated, it is flagged as uncertain. If the mo-
tion estimation is successful, then the system compensates for the previously
computed camera egomotion and evaluates the magnitude of the vehicle’s
motion. If it is greater in terms of either rotation or translation than a partic-
ular threshold, then the object is flagged as dynamic; otherwise, it is labeled
as static. Figure 4.4 provides a visual overview of these states, and the tran-
sitions between them. For the purpose of static/dynamic classification, an
object’s 3D motion is compared to the egomotion using the odometry com-
parison metrics described in [19]. This involves using the magnitude of the
translation and the angle of its rotation for the classification.

kdynamic and kstatic are thresholds indicating the maximum number of con-
secutive frames during which relative motion estimation is allowed to fail,
before a dynamic or static track “falls back” to an uncertain state. In practice,
we set them to 2 and 3, respectively, as we found that larger values can lead to
corrupted volumetric reconstructions due to the buildup of uncertainty in the
object’s position. For short gaps in tracks where motion can not be estimated,

39

4. Dynamic Reconstruction

using a constant velocity assumption has been found to work well.

If the motion estimation is successful and the object is flagged as dynamic,
then the pipeline attempts to refine the object motion estimate using a dense
alignment scheme similar to the one used to compute visual odometry in [42].

4.3.1 Coarse Alignment using RANSAC

In order to compute the motion of an object, we first leverage the sparse scene
flow computed in the first part of the pipeline, which is masked using the
current segmentation silhouette.

As described in the previous subsection, the masked scene flow associated
with a specific object instance is used as input to estimate the motion of a
virtual camera with respect to the object instance, which is assumed to be
static. If the estimation is successful, then the 3D motion of the object is
equal to the inverse of the virtual camera’s motion. For static objects, this
obviously means that the resulting 3D object motion will be nearly identical
to the camera’s egomotion. This can be used to classify objects with known
motion as static or dynamic.

If the object motion at the previous frame is known, then we use it to initialize
the estimation process, which can improve its convergence rate.

The estimation process is based on RANSAC, and uses the same formulation
as the visual odometry, which optimizes the 6-DoF relative pose using the
Gauss-Newton method on a nonlinear least-squares objective penalizing the
reprojection error of the features from the previous time step into both the
left and right frames of the current one. The process is described in more
detail in §3.1.2.

Table 4.1: The libviso2 parameters used for the RANSAC-based pose esti-
mation.

Parameter Value

Matching: nnms 3
Matching: half resolution false
Matching: multi-stage true
Matching: refinement per-pixel
Maximum RANSAC iteration: 200
RANSAC inlier threshold 2.0
Maximum features per bucket 15

Table 4.1 shows the libviso2 parameters used in the sparse scene flow and
object instance motion estimation procedures.

It is worth noting that we do not need to perform such masking when com-
puting the camera’s egomotion, since the employed method is designed to be
robust to outliers. In other words, we always use all the available scene flow
vectors when computing visual odometry. We have investigated the effect

40

4.4. Volumetric Fusion in Dynamic Environments

of only computing visual odometry on the flow vectors associated with the
static parts of the scene, but we did not see any improvements in accuracy or
convergence rate.

4.3.2 Pose Refinement Using Direct Image Alignment

After the initial motion estimate is computed using RANSAC, the system can
attempt to refine it further using a semi-dense alignment procedure which
minimizes the sum of squared photometric errors for all high-gradient pixels.
This approach is based on the work of Liu et al. [42].

The optimization objective is the sum of squared photometric errors over
Ω
(
It), the set of high-gradient pixels present in the current instance view:

E
(

Tt,t−1
)
= ∑

i∈Ω(It)

r2
i , (4.2)

where ri is the ith photometric residual,

ri = It(ui)− It−1
(

π
(

Tt,t−1π−1(ui, dui)
))

. (4.3)

The optimization is performed with respect to Tt,t−1, the transformation from
the previous to the current frame, which is initialized using the output of the
coarse method. It and It−1 are the intensity images at times t and t− 1, ui,
the coordinates of the ith pixel, and π, the projection function mapping ho-
mogeneous 3D points in the camera’s coordinate frame to dehomogenized
2D pixel coordinates. Similarly, the function π−1 maps a 2D pixel location
ui and its corresponding depth value dui to a 3D point expressed in homoge-
neous coordinates.

Just like in the coarse case, the direct photometric alignment is computed
by iteratively minimizing the above error function using the Gauss-Newton
method.

Using this additional step incurs additional overhead while providing only
very small improvements in reconstruction quality, so we chose to disable it
for most experiments, except those where its impact on 3D object tracking
quality is compared against the RANSAC-only version, in §5.3.

4.4 Volumetric Fusion in Dynamic Environments

The volumetric fusion is the central component of the DynSLAM pipeline. It
is tasked with fusing color and depth information from every frame into a
common representation in an accurate and robust manner. We use the con-
vention that the left color camera’s frame is the canonical coordinate frame of
the car, in which everything else, such as the depth maps, the visual odome-
try, and the volumetric fusion are expressed.

We reconstruct both the dynamic objects and the static map using the open-
source InfiniTAM framework [38] as follows:

• For every track which just became eligible for reconstruction, initialize
its InfiniTAM instance.

41

4. Dynamic Reconstruction

• For every new frame belonging to a static or dynamic track, remove its
silhouette from the input color and depth frames, and place it into an
object instance frame.

• For every new frame belonging to an uncertain track, remove its silhou-
ette from the input color and depth frames, preemptively.

• Perform fusion and regularization for every object instance being recon-
structed.

• Perform the static map fusion and regularization.

As soon as the relative pose of an object instance between at least two frames
is known, its reconstruction can begin, starting with the frame before the first
successful relative pose estimation.

Once an object instance becomes eligible for reconstruction, the system ini-
tializes its own voxel space, as a new instance of InfiniTAM. The origin of
this new coordinate system corresponds to the camera pose at the time of the
first fused instance frame. The parameters for the reconstruction are similar
to those used by the static map, with the obvious exception of the maximum
number of voxel blocks, which is set dynamically, based on the configured
voxel size, in order to accommodate a 5m× 10m× 5m volume, which is suffi-
cient for most cars and vans encountered in the KITTI dataset. If this upper
threshold is reached, no more voxel blocks are allocated, but existing ones
can still be updated based on new measurements.

It is worth emphasizing that the system starts reconstructing all possibly-
dynamic objects as soon as the first relative pose is known, irrespective of
whether the objects are moving independently or static. This is a key aspect
of the system, and the motivation behind it is to allow DynSLAM to support
cases where objects transition from being static to dynamic, such as when a
parked car starts moving, or when cars which were first detected waiting for
at a traffic light depart as the light turns green.

This constitutes a significant advantage over systems which detect objects
based on motion cues alone, since it ensures DynSLAM is aware of poten-
tially dynamic objects before they start moving, which is very advantageous
for autonomous driving in crowded urban environments.

Before a potentially dynamic object can be confidently labeled as static or
dynamic, it is flagged as uncertain. This happens when the object’s motion
cannot be estimated accurately enough, such as when it is far away from the
camera (more than 20 meters, typically), and its mask does not span enough
useful scene flow vectors to allow for an accurate estimation of the relative
pose between two frames of the object’s track. Objects flagged as uncertain
are not reconstructed, since their frames cannot be registered in a common
coordinate frame due to the lack of relative pose information, but they are
still preemptively removed from the color and depth frames which are fed to
the static map component, in order to avoid corrupting the map on the off
chance that the object is, in fact, moving independently, i.e., dynamic. Further
details about the possible states of an active track are presented in §4.3.

Finally, after the object instance reconstruction takes place, the resulting color
and depth buffers from which all potentially dynamic objects were removed

42

4.5. Map Regularization

are fed to the static mapping system.

While the InfiniTAM framework does include a series of frame-to-model
trackers, such as an ICP-based one and a direct image alignment one, they
are not robust enough for outdoor operation under rapid camera motion,
making them unsuitable for our application. Instead, as described earlier in
this chapter, we rely on the robust sparse visual odometry from [21] for com-
puting the egomotion, and the method described in §4.3 for determining the
motion of other moving objects.

Once a track has been inactive for more than a set number of frames (in
practice, we use the relatively aggressive number of 3), its reconstruction is
saved to disk and deallocated in order to save GPU memory. This works
well in the sequences on which we evaluated our system, but is not robust
to longer occlusions. In the future, we plan on using a more sophisticated
occlusion-aware tracking mechanism. This would require storing the vehicle
reconstructions in memory for longer periods of time, which can be achieved
using the voxel block swapping techniques described in [70, 55], which allow
voxel blocks to be moved to RAM when they become inactive, and back into
GPU memory once they are needed again.

4.5 Map Regularization

While performing volumetric reconstruction at a small scale, such as when
scanning room-sized environments using an RGBD camera, the magnitude
of the noise associated with the depth sensor is relatively small, compared to
that associated with estimating depth from stereo.

The active nature of most RGBD sensors, such as the Kinect or the ASUS
Xtion can lead to relatively low noise levels in their output stream, with pixels
whose depth could not be estimated being left blank.

RGBD sensors are, however, not without their downsides. As discussed
in Chapter 3, their range is very limited, and is typically less than ten me-
ters2. This makes them unsuitable for outdoor robotics in large environments,
where stereo cameras are preferred. Nevertheless, estimating depth informa-
tion from stereo cameras comes with its own set of challenges.

Figure 4.2 shows an example of the artifacts produced when rendering a
stereo depth map in 3D. It can be seen that the outlines of most objects have
a comet-like trail facing away from the direction from which they were per-
ceived. This effect is typically not present in reconstructions using the shorter-
range RGBD sensors.

The nature of these “streaks” makes them stretch far behind the object being
reconstructed, causing visual artifacts which also lead to the spurious alloca-
tion of large numbers of voxel blocks, increasing the memory footprint of the
maps, and reducing the system’s overall scalability.

In order to reduce the effect of this noise, and improve reconstruction quality
while reducing the memory consumption of our system, we turn to a simple

2The Kinect v2 sensor has a maximum (reliable) depth range of 4.5 meters, and the ASUS
XtionProTM has a range of 3.5 meters [32]

43

4. Dynamic Reconstruction

but effective technique first proposed by Nießner et al. [55]. In their work,
they describe a garbage collection method for removing blocks allocated due
to noise and moving objects. For every voxel block in the reconstruction, they
compute the minimum absolute value of the TSDF and the maximum weight.
If the maximum weight of a voxel block is zero, or the minimum value of the
TSDF is below a fixed threshold, the block is deleted, freeing up its slot in
the hash table and adding its VBA slot to the free list.

We extend this method in two ways. First, we increase its granularity, making
it capable of operating on a per-voxel basis, allowing it to “delete” voxels
considered noisy even when the block that they belong to does not itself get
deleted. Second, we improve this method’s scalability by allowing it to take
advantage of InfiniTAM’s visible block lists, preventing it from having to run
on the entire map at every frame.

Note that in the scope of this thesis, we use the terms “map pruning,” “map
regularization,” and “voxel garbage collection” interchangeably.

Voxel Deletion The first way we enhance the voxel garbage collection from
Nießner et al. is by enabling it to also operate on individual voxels, ensuring
that low-weight stray voxels always get cleared. This is performed purely for
aesthetic reasons, as memory savings can only be achieved when operating
on a per-block basis. A voxel is cleared by resetting its color and SDF values
to black and the maximum SDF value, i.e., their default values.

The conditions for a voxel’s deletion are the following:

• It must belong to a block whose age (time since allocation) is smaller
than a fixed threshold, kminAge. This ensures that newly allocated blocks
do not get collected before they have a chance to accumulate more mea-
surement.

• It must have a (depth) measurement weight smaller than a threshold
kweight, or a signed distance function (SDF) value larger than a threshold
kTSDF. The former condition ensures that the voxel was observed more
than a fixed number of times, while the latter allows voxel blocks which
are “far enough” from the actual surface to be flagged for deletion.

After the individual voxels are processed, the non-empty voxels in every
block are counted using a simple block-level parallel reduction. Blocks found
to consist entirely out of empty voxels are deleted from the hash table. Their
corresponding voxel memory block is also released and re-added to the free
block list.

Algorithm 1 shows a high-level overview of the proposed voxel garbage col-
lection method. The required parameters are:

• t, the current time, i.e., frame number. This is used for accessing the
appropriate visible block list.

• kTSDF, the maximum TSDF value for a legitimate voxel. Voxels with a
TSDF value above this get deleted.

• kweight, the weight below which voxels are eligible for deletion.

44

4.5. Map Regularization

Algorithm 1 Map Regularization through Voxel Garbage Collection

1: procedure MapRegularization(t, kTSDF, kweight, kminAge, hashTable, visible)
2: for all block ∈ visiblet−kminAge in parallel do
3: if age(block) > kminAge then
4: for all voxel ∈ block in parallel do
5: if TSDF(voxel) < kTSDF ∨ weight(voxel) < kweight then
6: voxel← ∅
7: usedVoxelCount← CountNonEmpty(block)
8: if usedVoxelCount = 0 then
9: lockBucket(computeBlockHash(block))

10: freeBlock(block)
11: deleteEntry(hashTable, block)
12: unlockBucket(computeBlockHash(block))

Time

Vt−kminAge

Voxel GC Camera

Vt (current frame). . .

kminAge

Figure 4.5: Timeline of the voxel garbage collection system. Vi represents the
list of visible blocks at time i.

• kminAge, the minimum block age for a voxel to be eligible for deletion.
This is still necessary, despite only operating on visible block lists from
minAge frames ago, because certain blocks from minAge frames ago
could still be visible at the current time t. This can happen in one
of the following scenarios:

– The camera is stationary or moving very slowly.

– The camera has performed a (small) loop and is now viewing the
area seen approximately minAge frames ago.

• hashTable, the GPU-backed hash table used for accessing the voxel
blocks.

• visible, a list of visible block lists corresponding to every frame.

Scalability One of the main limitations of the original voxel garbage collec-
tion implementation is the fact that it always runs on every allocated voxel
block. This means that every collection operation processes a large number of
blocks which have not changed since the previous collection, leading to sub-
stantial redundancy. As our second improvement to the method, we address
this issue.

As described in Chapter 3, InfiniTAM keeps track of a list of visible blocks for
the most recent frame, for efficiency reasons. By storing this list at every time
step, we can record a history of which blocks were visible over time. This list
can be leveraged to significantly improve the efficiency of the voxel garbage

45

4. Dynamic Reconstruction

collection as follows: Knowing that voxels belonging to blocks younger than
kminAge should never be deleted, and that voxels belonging to blocks older
than that have already been processed and are very likely unchanged, given
the rarity of loops in driving scenarios, at every time t we only consider the
blocks which were visible at time t− kminAge for collection. In other words,
DynSLAM performs voxel garbage collection in lockstep with fusion. After
processing the nth input frame, allocating the corresponding voxel blocks,
fusing the depth map, accounting for dynamic objects, etc., the system per-
forms voxel garbage collection on the blocks visible at the time of input frame
n− kminAge. Figure 4.5 shows a simplified timeline of this process.

In scenes where the static map can easily occupy hundreds of thousands
of blocks, the visible list at every given frame typically holds around 8,000–
12,000 blocks, resulting in a 10-fold reduction of computational costs, as com-
pared to running the process over the entire volume at every step. On an
nVIDIA Titan X, this typically results in an overhead of less than 1ms at ev-
ery frame. Detailed results in terms of memory savings and map accuracy
improvements are presented in §5.2.

While this process is necessary for large maps, when reconstructing vehicles
we can afford to simply run the collection process for the entire volume, at
every frame, given their much smaller scale. Moreover, once a dynamic object
leaves view, we perform one final, more aggressive voxel garbage collection
(with a higher kweight) before (optionally) saving its model to the disk.

Weight Visualization In order to explore the voxel weight distribution in
a map, we added a new rendering mode to the InfiniTAM engine, enabling
the visualization of individual voxels’ weights in real-time. A preview of this
mode is shown in Figure 4.6. It can be seen that much of the noise associated
with the streaking artifacts is rendered in red, signifying that it is eligible for
garbage collection. The thick red band at the bottom of the reconstruction
corresponds to the start of the sequence, and was only seen in one frame,
leading to the low weight associated with it.

Implementation Details Implementing the voxel garbage collection in the
InfiniTAM framework required a number of changes to be made to the core
of the volumetric fusion engine.

The GPU hash table implementation from InfiniTAM is lock-free, which
means it is very high-performance, but that it does not support deletions,
which would require locking a bucket to ensure that the consistency of the
hash table and the excess list are maintained upon item deletion. Moreover,
the original InfiniTAM engine makes heavy use of absolute indices to the
hash table and/or the excess list. The typical use case replaces the usage of
keys with raw table indices, in order to avoid additional hashing operations
and hash table look-ups. An example of this is the original visible list. In-
stead of containing the keys, i.e., coordinates of the visible blocks, it stored
raw offsets into the hash table for performance reasons. However, once the
hash table is required to support deletions, storing raw indices is no longer
an option, as deletions can cause them to become stale, leading to corruption.

46

4.5. Map Regularization

(a) Voxel weight visualization in InfiniTAM.

(b) A shaded version of the same view.

Figure 4.6: Visualizing voxel weights in InfiniTAM. The red voxels are eligi-
ble for deletion. The gray voxels’ intensity is proportional to their weight.
Blue voxels are saturated voxels whose measurement weight is equal to the
maximum weight.

To this end, we made two major modifications to the core InfiniTAM engine:
First, we updated all the code which relied on absolute indices, such as the
block allocation code, and the visible block list, to correctly address elements
in the hash table by their key, instead of raw indices. Second, we added
support for the deletion operation to the hash table, ensuring that the buckets
are locked when deletions are performed, as described in [55].

While these modifications do lead to a slight decrease in performance for the
volumetric fusion, adding roughly 1–2ms of additional overhead per frame,
the cost penalty is negligible when compared to other, more expensive com-
ponents from our pipeline, such as the semantic segmentation or the depth
map computation.

The modified version of InfiniTAM used for this thesis as a component of
DynSLAM can be found online at https://github.com/AndreiBarsan/InfiniTAM.

47

https://github.com/AndreiBarsan/InfiniTAM

Chapter 5

Experimental Results

We evaluate the reconstruction, 3D tracking performance, and memory foot-
print of our system both quantitatively and qualitatively on a major au-
tonomous driving dataset, the KITTI Vision Benchmark Suite [19]. The dataset
encompasses a wide variety of outdoor video sequences recorded from a
moving vehicle in both urban and rural areas around the city of Karlsruhe,
in Germany. All sequences include a video component, which consists of
1392× 512 stereo pairs recorded with a baseline of 0.54m, as well as Velo-
dyne LIDAR point clouds. The dataset also contains INS-based ground truth
poses for every frame, as well as ground truth depth, optical flow, scene flow,
2D/3D object tracks, and semantic and road segmentation for selected frames
and brief sub-sequences. The sampling rate of the dataset is 10Hz.

The dataset is challenging for multiple reasons. First, the speed of the vehicle
varies significantly within sequences, and can be very high in, e.g., freeway
sections. Second, the lighting conditions also vary both between sequences,
since the dataset covers sunny and cloudy weather, but also within them,
as the camera passes through forests and tunnels. Third, there are many
specular and transparent surfaces present, such as cars and windows, which
can prove to be particularly challenging to algorithms estimating depth from
stereo pairs. Finally, other moving objects in scenes, such as cars, bikes, pedes-
trians, trains, etc., can also move very rapidly, and occlude large parts of the
cameras’ field of view. Examples from all of these categories are shown in Fig-
ure 5.1.

Concretely, we base our experiments on the video sequences from the KITTI
odometry and tracking benchmarks [19], using the LIDAR as a ground truth
for evaluating the quality of both the reconstructed static maps, as well as
the dynamic object instances. We also use the 3D tracking ground truth to
evaluate the accuracy of the pose estimation for the dynamic objects. Overall,
we evaluate our system on 21 input sequences consisting of over 25000 frames,
corresponding to roughly 40 minutes of driving through varied urban and
rural environments. Figure 5.2 shows a sample reconstruction from KITTI
odometry sequence 13 (the bridge sequence) together with several highlights,
including the reconstruction of a dynamic vehicle encountered near the start
of the sequence.

49

5. Experimental Results

(a) A bloom artifact caused by reflected sunlight.

(b) A strong difference in light intensity between the tunnel and the outside.

(c) Cars approaching from the opposite direction result in very fast relative motion,
which can be very challenging for an object reconstruction pipeline.

Figure 5.1: Three examples of challenging visual situations encountered in
the KITTI dataset.

50

Figure 5.2: The static map created by DynSLAM from the first 1560 frames
of KITTI odometry sequence 13. All cars are removed from the map and
reconstructed separately. The top-left highlight shows the reconstruction of
an independently moving car built on the fly.

Figure 5.3 shows a screenshot of the main user interface for DynSLAM. In
addition to allowing all aspects of the pipeline to be visualized, including the
segmentation result, LIDAR ground truth, sparse scene flow, etc., it provides
tools for controlling the regularization and exporting the reconstructions as
meshes. The tool also computes all the accuracy metrics presented in this
chapter, offering the option to visualize them in real time.

The remainder of this chapter is structured as follows: first, we present a se-
ries of experiments which highlight the reconstruction quality of our system
in both static and dynamic scenes, highlighting the benefits of reconstructing
the dynamic objects instead of ignoring their information. Next, we quan-
tify the impact of the map regularization introduced in §4.5 on the resulting
accuracy, completeness, and memory consumption. Following this, we evalu-
ate the 3D tracking performance of our system, comparing the results of the
sparse feature-based pose estimation to the refined results obtained using
the direct alignment phase. Finally, we measure the effect of the spatial and

51

5. Experimental Results

Figure 5.3: The DynSLAM GUI application allows the map and the dynamic
objects to be visualized as they are reconstructed. Here, we see a preview of
the KITTI-odometry sequence number 5 being reconstructed, around frame
2050. From top-left to bottom-right, it shows (1) a full preview of the active
reconstruction together with the camera pose history, (2) a preview of the left
camera’s input with the LIDAR ground truth superimposed as a sanity check,
(3) the reconstructed depth map with all car silhouettes removed, (4) a pre-
view of the frame segmentation result, (5) a preview of the instance-specific
color frame for one of the active reconstructions, (6) memory usage statistics,
and (7) a novel view of one of the objects being reconstructed separately from
the static map.

temporal input resolution on reconstruction quality in a series of ablation
studies.

5.1 Reconstruction Quality

5.1.1 Methodology

In order to quantitatively evaluate the reconstruction quality of our system,
we compare our generated static map and dynamic object models to the LI-
DAR point clouds from each frame. This is performed using the method
described by Sengupta et al. [65] and Vineet et al. [70]. The method rep-
resents a generalization of the standard depth evaluation strategy from the
KITTI Stereo Benchmark [49]. It consists in projecting the LIDAR points onto
the left camera’s plane, and comparing them with the corresponding values
of the input and fused frames. The input frames are simply the depth maps
computed using ELAS/DispNet at that specific frame, while the fused frames
are depth maps synthesized from the active reconstruction, which also incor-
porates the most recent input depth map.

52

5.1. Reconstruction Quality

For measuring accuracy, we only consider LIDAR points which have a corre-
sponding value in both the input depth, and the fused depth. This ensures
that the comparison between ELAS and the fused result is fair, even when
the input frame is nearly 100% accurate but very sparse. This is not an issue
with the DispNet input frames, which always cover the entire input image.

Following the methodology of the KITTI Stereo Benchmark [49], we compare
pixel disparities, and consider pixels whose delta disparity is greater than
3px and 5% of the ground truth value as erroneous.

Similarly, we evaluate the completeness of both the input and the fused depth
maps by measuring the number of ground truth pixels (i.e., projections of
LIDAR points in front of the vehicle) for which a corresponding input/fused
depth value exists.

We compute per-frame accuracy and completeness scores and present their
averages across the frames in a sequence, together with information about
their variance in the shape of box plots.

The box plots presented in, e.g., Figure 5.6, follow the Tukey convention: The
bottom and top edges of the boxes correspond to the first and third quartiles
of the represented distribution. The bottom and top whiskers stretch up to
the lowest and highest data point still within 1.5 IQR (inter-quartile range) of
the lower or upper quartile. We have chosen to use box plots because of their
ability to effectively detailed information about the underlying distribution,
more so than, e.g., simple error bars.

The primary goal of our system, which is the construction of separate dense
models of the environment as well as of the objects within, means that simply
computing accuracy and completeness scores on full frames is insufficient.
The reasons for this are twofold. First, computing full-frame scores does
not yield specific information about the different reconstructions built by our
system; the results would simply aggregate the accuracy and completeness
scores over static and dynamic parts of the environment alike. Second, the
full-frame evaluation can mistakenly label correct pixels as erroneous when
the static map is occluded by an object our system can track but not recon-
struct, such as a biker, or a car which just entered the scene and whose 3D
motion is not yet known.

Figure 5.4 shows an example of such a case. In this scenario, the car has
just entered the frame, but given that only a small part of it is visible, its 3D
motion can not be estimated yet. Therefore, DynSLAM tracks it in 2D, but
does not yet begin to do so in 3D, or attempt to reconstruct it (which would
require knowledge of its 3D motion). Therefore, the synthesized depth map
from DynSLAM’s point of view does not yet incorporate this car, as can be
seen in Figure 5.4a. Directly comparing this depth map to the input depth
map and to the LIDAR ground truth is therefore not appropriate, since it
would not account for the detected-but-not-yet-reconstructed car.

In order to solve this issue, we evaluate our system using semantic-aware eval-
uation based on the semantic segmentations computed using the Multi-task
Network Cascades. We evaluate the input and synthesized (i.e., fused) depth
maps as follows:

53

5. Experimental Results

(a) An example of misattributed errors caused by evaluating an area of the image
specifically not reconstructed as an error. The problematic area is highlighted using
the green ellipse.

(b) The voxels evaluated as part of the static map, when using semantic-aware evalu-
ation. The ground truth measurements corresponding to the dynamic object not yet
being reconstructed are no longer taken into account.

(c) The original input frame, where the
car has just entered view, so its motion
is still unknown.

(d) The corresponding instance-aware
object segmentation. Everything be-
longing to the static background is
evaluated on its own. Ground truth
values belonging to all dynamic ob-
jects which DynSLAM has started re-
constructing are evaluated together, as
a separate metric.

Figure 5.4: Example scenario where aggregating errors over the entire frame
introduces bias in the results, by attempting to evaluate an area occupied by
a vehicle whose reconstruction was not yet started due to lack of information
about its motion.

54

5.1. Reconstruction Quality

• Ground truth points associated with no potentially dynamic object are
counted towards the static map statistics.

• Ground truth points associated with potentially dynamic objects under-
going reconstruction are counted towards the dynamic object statistics.

• The remaining ground truth points which correspond to dynamic ob-
jects not undergoing reconstruction (e.g., bikes, pedestrians, or distant
cars whose 3D motion cannot be computed) are ignored.

This method is, obviously, imperfect, as it relies on the computed semantic
segmentation, which is not always fully reliable. Nevertheless, we have found
it to work well in practice, allowing us to draw numerous insights about our
system’s performance under various conditions, as will be described in detail
in the following sections. Other possible approaches to this challenging eval-
uation scenario, such as using simulated data with ground truth 3D models,
are discussed in §6.2.5.

While InfiniTAM is already quite robust to outliers and dynamic objects, we
show that our method has the potential to further improve the quality of
the static maps in challenging scenes, while also robustly reconstructing the
encountered dynamic objects.

5.1.2 Experimental Results on the KITTI Odometry Sequences

We present the results on the 11 KITTI odometry training sequences in Fig-
ures 5.6–5.9. The experiments lead to several observations.

First, the reconstruction accuracy of the static map is improved slightly by
the fusion when using ELAS maps, but not when using DispNet depth maps.
This can be explained by the fact that the results of DispNet are noisier and
less correlated across frames, reducing the benefits of the fusion.

Second, ELAS leads to more accurate static maps than DispNet (Figure 5.6),
but less accurate object reconstructions (Figure 5.7). As illustrated in Fig-
ure 5.10, the fact that DispNet is more robust to reflective surfaces and trans-
parency leads to improved performance when reconstructing dynamic ob-
jects, i.e., cars, in our case.

Third, the reconstruction accuracy of the dynamic objects is usually not im-
proved by fusion when compared to the input depth maps, and the overall
variance in accuracy is much higher. This is to be expected, as vehicles are
considerably more challenging to reconstruct than, e.g., road surfaces, fences,
and buildings, due to their non-lambertian properties, as well as their inde-
pendent motion.

Fourth, DispNet leads to much denser (i.e., more complete) reconstructions of
both the static map, and of the objects, than ELAS but this gap is reduced by
the fusion. This follows from the fact that ELAS depth maps are sparser, but
more accurate, meaning that they benefit from the fusion more than DispNet.

Finally, the variance of the ELAS depth map completeness is high because it
often produces very sparse results in challenging lighting conditions, as high-
lighted in Figure 5.5. Nevertheless, the magnitude of this effect is reduced
significantly by the fusion process.

55

5. Experimental Results

(a) A sample input frame with strong shadows and intensity satura-
tion.

(b) The resulting ELAS depth map, which only covers a small pro-
portion of the original image.

(c) DispNet’s result is less sharp, failing to reconstruct, e.g., the street
light on the right side of the road, but it is also not affected by the
lack of texture on the road.

Figure 5.5: A sample input frame where challenging lighting conditions lead
to low-coverage ELAS depth maps, without affecting DispNet.

00 01 02 03 04 05 06 07 08 09 10
Sequence

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

ELAS input

ELAS fused

DispNet input

DispNet fused

Figure 5.6: Input and reconstruction accuracy on the static parts of the KITTI
odometry sequences.

56

5.1. Reconstruction Quality

00 01 02 03 04 05 06 07 08 09 10
Sequence

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

ELAS input

ELAS fused

DispNet input

DispNet fused

Figure 5.7: Input and reconstruction accuracy on the dynamic parts of the
KITTI odometry sequences.

00 01 02 03 04 05 06 07 08 09 10
Sequence

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
om

pl
et
en
es
s

ELAS input

ELAS fused

DispNet input

DispNet fused

Figure 5.8: Input and reconstruction completeness on the static parts of the
KITTI odometry sequences.

00 01 02 03 04 05 06 07 08 09 10
Sequence

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
om

pl
et
en
es
s

ELAS input

ELAS fused

DispNet input

DispNet fused

Figure 5.9: Input and reconstruction completeness on the dynamic parts of
the KITTI odometry sequences.

57

5. Experimental Results

Note that the unusual dynamic reconstruction results for sequence 04 reflect
its short length (only 271 frames, i.e., 27 seconds of driving), and the fact
that almost no object reconstructions actually happen. The sequence features
driving on a wide road behind a van which is still too distant to reconstruct,
while all other cars approach from the opposite direction, on a distant lane.
None of the other cars are visible within the (20m) depth range for more
than 2–3 frames, making them impossible to reconstruct reliably, and lead-
ing to the deceivingly small error rate and large completeness variance from
Figures 5.7 and 5.9.

(a) ELAS depth maps are generally ac-
curate, but unable to deal with reflec-
tive or transparent surfaces well, lead-
ing to less complete vehicle reconstruc-
tions.

(b) DispNet depth maps can enable
denser object reconstructions.

Figure 5.10: Two reconstructions of the same car computed by DynSLAM
using ELAS and DispNet depth maps. The latter method often leads to more
complete results, even under challenging lighting conditions.

5.1.3 Experimental Results on the KITTI Tracking Sequences

Additionally, we use the first 10 training sequences from the KITTI tracking
dataset to evaluate the effects of the dynamic object awareness on the quality
of the static map reconstruction. To this end, we evaluate the static parts
of the input (as described at the beginning of this section), comparing the
input depth to the fusion result with and without dynamic object awareness
(Dynamic Fusion and Standard Fusion in Tables 5.1 and 5.2). The former case
represents DynSLAM’s default mode of operation, which attempts to sepa-
rate all potentially dynamic objects from the static map, to prevent it from
becoming corrupted. The latter is not semantics-aware, essentially operating
as an outdoor version of the vanilla InfiniTAM [38] system.

The accuracy and completeness results of this experiment are shown in Ta-
bles 5.1 and 5.2, respectively.

As in the previous series of experiments, the fused results outperform the
input in terms of reconstruction accuracy on nearly all sequences. More-
over, the dynamic fusion outperforms the standard fusion on most of the
sequences. This showcases our method’s ability to improve the quality of the
static maps by actively preventing dynamic objects from corrupting them.

Second, just as observed in §5.1, the reconstructions produced using ELAS are
more accurate than those using DispNet, but less complete. This trend can be

58

5.1. Reconstruction Quality

Table 5.1: Overview of the static map reconstruction accuracy on the first ten
sequences of the KITTI 2012 tracking Benchmark. Bold values indicate the
best result within the same depth map category, while stars mark the overall
best score on a sequence.

DispNet ELAS

Input Standard
Fusion

Dynamic
Fusion

Input Standard
Fusion

Dynamic
Fusion

00 0.8546 0.8402 0.8743* 0.8512 0.8285 0.8650
01 0.9160 0.9266 0.9215 0.9218 0.9373* 0.9316
02 0.9563 0.9635 0.9635 0.9677 0.9790 0.9797*
03 0.8455 0.8522 0.8591 0.8875 0.8987 0.9062*
04 0.8965 0.9069 0.9067 0.9117 0.9357 0.9385*
05 0.8393 0.8354 0.8400 0.8990 0.9102 0.9163*
06 0.9523 0.9667 0.9707 0.9602 0.9668 0.9709*
07 0.8743 0.8825 0.8838 0.9009 0.9222 0.9251*
08 0.9029 0.9086 0.9123 0.9267 0.9282 0.9311*
09 0.8824 0.8755 0.8786 0.9184 0.9210 0.9238*

Table 5.2: Overview of the static map completeness on the first ten sequences
of the KITTI 2012 tracking Benchmark. Bold values indicate the best result
within the same depth map category, while stars mark the overall best score
on a sequence.

DispNet ELAS

Input Standard
Fusion

Dynamic
Fusion

Input Standard
Fusion

Dynamic
Fusion

00 0.9847 0.9869* 0.9773 0.7154 0.9377 0.9071
01 0.9835 0.9839* 0.9646 0.7789 0.9627 0.9364
02 0.9856 0.9896* 0.9872 0.8360 0.9784 0.9743
03 0.9761 0.9805* 0.9742 0.7961 0.9566 0.9513
04 0.9883 0.9888* 0.9837 0.8150 0.9736 0.9667
05 0.9828 0.9857* 0.9822 0.7887 0.9679 0.9631
06 0.9886 0.9921* 0.9902 0.8233 0.9610 0.9504
07 0.9882* 0.9878 0.9733 0.7758 0.9474 0.9277
08 0.9853 0.9853* 0.9820 0.8243 0.9532 0.9488
09 0.9850* 0.9841 0.9734 0.8352 0.9735 0.9610

59

5. Experimental Results

(a) Static fusion is prone to corrupt the environment map with streaks and other
artifacts produced by independently moving objects.

(b) Dynamic fusion, the primary operating mode of DynSLAM, prevents vehicle trails
and leftover halos from being integrated into the map.

Figure 5.11: Reconstructions produced by Dynamic and Standard fusion on
KITTI tracking sequence 01.

seen very clearly in Table 5.1, where ELAS-based reconstructions outperform
DispNet-based ones on nearly all sequences. Conversely, Table 5.2 shows the
DispNet-based reconstructions outperforming the ELAS-based ones in terms
of reconstruction completeness. Interestingly, despite its lower accuracy, stan-
dard fusion leads to slightly higher completeness scores than dynamic fusion.
This is explained by the fact that object instance removal is not perfect, and
tends to sometimes also lead to small areas of the background being removed
along with the objects. While this does not affect the quality of the instance
reconstructions, with the additional background fragments being prime can-
didates for voxel garbage collection, it does explain the slightly lower scores
of the dynamic fusion in terms of completeness.

At the same time, even in those cases where standard fusion scores better
than dynamic fusion in terms of accuracy, such as in sequences 01 and 04,
the qualitative results of the latter method still remain superior. An example
from sequence 01 is presented in Figure 5.11, where two cars passing in front
of the camera leave behind unwanted trails in the static map when dynamic
fusion is not enabled. When taking dynamic objects into consideration, the
corruption is no longer present. This difference is not reflected in the quan-

60

5.2. Map Regularization

titative evaluation because the area containing the corruption is not covered
by the ground truth. The evaluation of sequence 04 also exhibits similar
behavior.

The dynamic fusion accuracy and completeness scores from sequence 09 are
poorer than the input due to the limitations of the segmentation component,
which consistently fails to detect a truck driving in front of the camera for
several hundreds of frames. This negates all the benefits of dynamic fu-
sion, which cannot succeed if semantic detection fails, leading to the supe-
rior scores of the input depth maps, which obviously don’t suffer from any
fusion-related artifacts. In the future, such scenarios could be avoided by
also incorporating motion cues in the object detection component. This is
discussed in more detail in Chapter 6.

5.2 Map Regularization

We evaluate the impact that the regularization technique based on voxel
garbage collection presented in §4.5 has on DynSLAM’s memory consump-
tion and reconstruction accuracy. In order to measure reconstruction accu-
racy, we use the same metrics described in the previous section. Figure 5.12
shows a top-down comparison of two reconstructions using no regularization
and moderate regularization, respectively.

In order to also capture the effect of the voxel garbage collection, which is per-
formed in lockstep with the reconstruction, but with a fixed delay of kminAge
frames, we also add a delay to the evaluation. That is, at time t, the voxel
garbage collection is processing the blocks visible at time t − kminAge, and
the evaluation is performed using the depth map and camera pose from
t− kminAge − τ. The additional offset τ ensures that the map viewed by the
camera at that time has been processed by the regularization. In our experi-
ments, we set τ = kminAge.

Given the limitations of the ground truth, which is provided in the form
of per-frame LIDAR readings, we only evaluate the accuracy of the static
reconstructions under the effect of voxel garbage collection. The delayed
evaluation scheme described above prevents us from also evaluating dynamic
object reconstructions, as their position is only known to DynSLAM while
they are being observed, and not kminAge + τ frames ago.

To this end, we use the same semantic-aware evaluation scheme as in §5.1,
with the only difference being that we only evaluate the static map.

We perform our experiments on the first 1000 frames of KITTI odometry se-
quence number 9, as it contains a small number of dynamic objects, while
at the same time being diverse in terms of encountered buildings and veg-
etation. Even through we also use the regularization for the vehicle recon-
structions, they only represent a very small fraction of the system’s overall
memory usage. We therefore focus on evaluating the memory usage of the
static map.

It is also worth noting that due to the nature of most artifacts removed by
the regularization, the quantitative evaluations of the subsequent improve-
ment in map quality have a tendency to underestimate the magnitude of the

61

5. Experimental Results

Figure 5.12: A comparison between a map of a residential area produced
with regularization turned off (top), and one produced with regularization
turned on (bottom, kweight = 4). Note the much clearer outlines of the houses
on the street in the regularized version. The middle section highlights an
example where the regularization removes much of the streaking artifacts,
while preserving the outline of the house and the surfaces of the road and
sidewalk. Additionally, storing the regularized version uses less than half the
amount of memory required to store the unregularized one.

62

5.2. Map Regularization

Figure 5.13: A sample KITTI frame with the available ground truth LIDAR
points superimposed in yellow. Note the limited vertical range of the LIDAR,
which doesn’t reach the leaves of the tree on the left or the top of the sign on
the right.

improvement. This is because the “streaks” in the 3D map tend to be ori-
ented away from the moving camera, and, therefore, away from the LIDAR,
preventing them from being compared to any ground truth in a meaningful
way. Moreover, as can be seen in Figure 4.2, these artifacts are typically as-
sociated with objects such as trees, signs, and buildings, and are very often
present above the upper range of the LIDAR (Figure 5.13), thus making them
impossible to compare to any ground truth.

At the same time, it is also not possible to compensate for this limitation
by relying on the backwards- and side-facing LIDAR readings from future
frames. This is because they would significantly distort the evaluation met-
rics, since the reconstructions do not incorporate information coming from
those angles. For example, the top of a tree on the side of the road is not
shaped like a full sphere in the reconstruction, but like a half-sphere, since
is only viewed from one side by the vehicle’s front-facing cameras, as the
they are moving towards it. Using backwards- and side-facing LIDAR data
to evaluate the map accuracy is therefore not possible without distorting the
metrics.

Nevertheless, we are able to show quantitative results indicating that map
accuracy does exhibit a modest increase when regularization is performed,
which we then complement with numerous additional qualitative results.
Furthermore, we show that memory usage drops significantly with increased
regularization strength, all while the map completeness is only affected to an
acceptable extent.

Figure 5.14 shows the evolution of the system’s memory usage over time,
for different values of kweight, the noise voxel weight threshold (see §4.5 for
details).

As expected, the memory consumption of the system goes down as the noise
threshold is set higher, that is, as voxels are more aggressively pruned from
the map. The differentiation starts at frame 80, as that is the minimum prun-
ing age we have set in our experiments (corresponding to eight seconds of
driving time, enough to avoid pruning voxels still in view). At the same time,
the lower density of the ELAS depth maps also leads to overall less memory
usage. This aspect will be covered in more detail in the following paragraphs.

63

5. Experimental Results

0 200 400 600 800 1000
Frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
em

or
y
us
ag
e
(G

iB
)

kw = 0

kw = 1

kw = 2

kw = 3

kw = 5

kw = 8

kw = 10

DispNet depth maps

0 200 400 600 800 1000
Frame

kw = 0

kw = 1

kw = 2

kw = 3

kw = 5

kw = 8
kw = 10

ELAS depth maps

Figure 5.14: Memory consumption over time, under different voxel garbage
collection thresholds (kw = kweight). A value of zero indicates no garbage
collection. Higher values correspond to more aggressive garbage collection.
In all examples, the minimum collection age was set to 80 frames.

Figure 5.15 illustrates the accuracy and completeness of the reconstructions
as a function of kweight, as well as the memory usage and an F1 score combin-
ing accuracy and completion.

The accuracy and completeness metrics are defined at the beginning of this
chapter, in §5.1. For the purpose of evaluating the regularization, we also
combine these two metrics into an F1-score, in order to better compare their
interplay to the memory usage, as a function of the regularization strength.
The F1-score is defined as

F1(frame) = 2 · A(frame) ·C(frame)
A(frame) + C(frame)

, (5.1)

where A and C represent the aforementioned accuracy and completeness
metrics. The primary purpose of this metric is to define a meaningful way
of combining reconstruction accuracy and completeness, in order to ease the
task of evaluating the trade-offs between reducing memory consumption and
reducing accuracy and completeness.

As illustrated in §3.2, the maps produced by DispNet are denser than those
produced by ELAS, which is also reflected in the completeness of the recon-
struction. At the same time, as seen in the previous sections, despite scoring
less than DispNet on the KITTI Stereo Benchmark [49], depth maps produced
by ELAS lead to more accurate, albeit less complete, reconstructions. This
trend is maintained even with increasing kweight.

Based on the F1-score plot from Figure 5.15, despite the fact that the recon-
structions produced using ELAS are more accurate, and those using DispNet
are more complete, their corresponding F1-scores are similar for values of
kweight smaller than 5. Afterwards, the DispNet reconstruction beings gain-
ing a noticeable advantage over the ELAS one. A possible explanation of this
trend is the fact that DispNet can draw more benefits from aggressive prun-
ing than ELAS. As kweight increases, the regularization reduces the impact of
DispNet’s downsides, namely, the stronger streaking artifacts and softness,

64

5.2. Map Regularization

0 1 2 3 4 5 6 7 8 9 10
kweight

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

ELAS

DispNet

0 1 2 3 4 5 6 7 8 9 10
kweight

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
om

pl
et
en
es
s

ELAS

DispNet

0 1 2 3 4 5 6 7 8 9 10
kweight

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1-
S
co
re

ELAS

DispNet

0 1 2 3 4 5 6 7 8 9 10
kweight

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
em

or
y
U
sa
ge

(G
iB
)

ELAS

DispNet

Figure 5.15: Reconstruction accuracy, completeness, F1-score, and memory
usage (in GiB) as functions of the regularization strength, comparing its ef-
fect on reconstructions using DispNet and ELAS depth maps. Larger values
of kweight correspond to stronger regularization (i.e., more aggressive voxel
garbage collection).

without seriously impacting its strong points, such as its density and its ro-
bustness to reflective and transparent surfaces.

Finally, based on the memory usage plot from Figures 5.14 and 5.15, it is
clear that the impact of the noise on the memory consumption of the recon-
structions is very pronounced. Even using very light regularizations with
kweight = 1 or 2 can already reduce the memory footprint of a reconstruc-
tion by more than 30%, with only small costs in terms of discarded (useful)
information.

Figures 5.16 and 5.17 showcase the results of different aggressiveness levels
of the voxel garbage collection on the static map. Figures 5.18, 5.19, and 5.20
show the results of the garbage collection on reconstructed cars.

65

5. Experimental Results

(a) No voxel
GC. Note the
artifacts towards
the left half of
the reconstruc-
tion, consisting
primarily of
thick streaks
extending away
from the trees.

(b) wmin = 3.
While noise is
still present in
the reconstruc-
tion, its impact
is significantly
reduced.

(c) wmin = 5.
Most of the un-
desirable noise
has been elim-
inated, while
the important
regions of the
map (the road,
fences, markings,
etc. are still
clearly visible).

Figure 5.16: Examples of reconstructions produced while using no voxel
garbage and light/moderate GC, respectively. Both reconstructions use Disp-
Net depth maps truncated at a maximum depth of 25m.

66

5.2. Map Regularization

(a) wmin = 8.
Nearly all the
noise has been
eliminated, but
now essential
parts of the
reconstruction
are starting
to be affected.
(Note the small
gaps in the road
surface.)

(b) wmin = 15.
The gaps are get-
ting larger, while
nearly no noise
is left to remove.

(c) wmin = 20.
Most voxels end
up being seen
as noise and
are collected,
lending the map
unusable.

Figure 5.17: Examples of very aggressive voxel garbage collection. Note that
going past wmin = 15 is already much too aggressive for any practical pur-
poses. Both reconstructions used DispNet depth maps truncated at a maxi-
mum depth of 25m.

67

5. Experimental Results

Figure 5.18: Reconstructed car before and after voxel garbage collection (Disp-
Net depth maps). This particularly challenging case was subject to strong
motion, and erroneous measurement fusion for the first two frames of the
track, leading to the heavy noise to the left of the car. The garbage collection
is able to remove nearly all associated artifacts.

Figure 5.19: Reconstructed car before and after voxel garbage collection (Disp-
Net depth maps). Note the clearer reconstruction border in the right image.

Figure 5.20: Reconstructed car before and after voxel garbage collection
(ELAS depth maps). While the garbage collection does remove some of the
undesired reconstruction artifacts, this image nevertheless highlights one of
the general weaknesses of ELAS, namely its inability to work well with trans-
parent surfaces, leading to the back window of the car appearing like a hori-
zontal surface.

68

5.3. Tracking Accuracy

5.3 Tracking Accuracy

We perform a series of experiments to measure the impact of the direct
alignment-based refinement stage of the 3D object tracking. Our results show
that this process does not improve tracking performance, and, in fact, can
even lead to less accurate results than the coarse stage alone.

The experiments are based on the KITTI tracking benchmark methodology [19].
However, given that DynSLAM does not estimate 3D bounding boxes for the
dynamic objects, we only evaluated the accuracy of the relative pose estima-
tion.

The ground truth information from the KITTI tracking benchmark consists
of annotated 3D boxes, called tracklets, which are provided for all potentially
dynamic objects in a sequence. For the scope of this evaluation, we focused
on cars. The box coordinates are expressed in the camera’s reference frame,
and grouped into tracks. Therefore, computing the ground truth relative
poses between consecutive frames is straightforward for all objects.

The analysis is performed as follows: for every car tracked by DynSLAM we
find the matching ground truth tracklet, and compare the relative transfor-
mations between frames computed by DynSLAM to the ground truth relative
transformations computed from the tracklet data. The error metrics are the
same as those used in the KITTI odometry benchmark [19], that is, the length
of the translation error, and the angle of the rotation error. The errors are
computed on a frame-to-frame basis.

0.00

1.00

2.00

3.00

Re
la
tiv

e
tra

ns
la
tio

n
er
ro
r (

m
) Translation error over time

No refinement (mean)
With refinement (mean)
No refinement (median)
With refinement (median)

2 3 4 5 6 7 8 9 10 11
Track frame

0.02

0.04

0.06

0.08

Re
la
tiv

e
ro
ta
tio

n
er
ro
r (

de
g) Rotation error over time

No refinement
With refinement
No refinement (median)
With refinement (median)

Figure 5.21: Aggregate 3D tracking errors with and without using the direct
alignment refinement described in §4.3.2.

Figure 5.21 compares the translation and rotation errors of the 3D tracking

69

5. Experimental Results

with and without the refinement stage. The results are computed over all ob-
jects which DynSLAM succeeds in tracking in sequences 0–6 from the KITTI
tracking dataset, totaling over 1800 frames of moderate and heavy traffic. We
consider the first 10 relative poses of all the tracks, and compute the mean
and median errors for every track frame. Note that the evaluation starts
with the second frame since we are evaluating relative poses, which are not
defined for the first frame in a track. In total, we aggregated data from 33
successfully tracked objects.

As mentioned at the beginning of this section, the direct alignment phase
does not improve the vehicle tracking process and, in fact, leads to worse re-
sults in most cases. This is particularly clear between frames 4 and 7, where
the refinement process increases both rotation and translation errors by al-
most an order of magnitude, on average.

Moreover, as can be seen when comparing the mean and median results, the
refinement method is susceptible to converge to very bad local optima, lead-
ing to extreme outliers in terms of both translation and rotation error. This,
in turn, increases the variance of the error metrics by a significant margin.

Figure 5.22: Sample car which the direct alignment method fails to track.
Note the pronounced reflections on the windows and hood, as well as the
shadow patterns on its side. Moreover, despite being quite close to the cam-
era, the featured vehicle occupies an area of roughly 350× 200 pixels, less
than 10% of the entire frame.

The failure of this approach can be explained by the nature of the objects
being tracked. Cars have highly non-lambertian surfaces, consisting almost
entirely of reflective and transparent materials. This violates some of the
assumptions made by the direct alignment method, which expects photomet-
ric consistency between frames. Further challenges include extreme scale
differences between consecutive frames, in particular when attempting to re-
construct cars moving towards the camera, as well as the low amount of data,
given that in many cases the tracked cars only occupy a fraction of the screen.
Figure 5.22 shows an example of a challenging scenario in which the direct
alignment method fails.

In the future we plan to make further improvements to the coarse method,
before improving the refinement stage, since we consider the former to hold
more untapped potential and “low-hanging fruit” than the latter. These ideas

70

5.4. Ablation Studies

are presented in more detail in §6.2.3.

5.4 Ablation Studies

5.4.1 Reduced Spatial Resolution

We analyze the impact of the input spatial resolution on the accuracy and
run time of DynSLAM. Most of these experiments are performed on KITTI
odometry sequence number 6, which consists of 1101 frames exhibiting a
good balance of buildings, vegetation, and traffic.

Our findings reveal that, as would be expected, the reconstruction accuracy
decreases with the input resolution. Similarly, the run time of some com-
ponents, such as ELAS, also decreases when operating on lower-resolution
input. At the same time, we found that even when using 25% of the input
dimensions, i.e., 306× 92 input, the system can still produce reasonable re-
constructions, albeit only when using ELAS depth maps. The performance
of DispNet drops significantly when using low-resolution input, leading to
noisier reconstructions.

Table 5.3: Mean inference time for ELAS and MNC, the most time-consuming
elements of our pipeline, as a function of the input resolution.

Resolution ELAS MNC

100% 121ms (std=7ms) 231ms (std=5ms)
75% 71ms (std=4ms) 229ms (std=4ms)
50% 33ms (std=3ms) 236ms (std=8ms)
25% 8ms (std=4ms) 235ms (std=10ms)

Table 5.3 shows the inference times of ELAS and the Multi-task Network
Cascades, which are by far the most expensive operations in our system, as
a function of the input resolution. Note that while the computation time of
ELAS does decrease with the resolution of its inputs, the time taken by the
instance-aware semantic segmentation does not.

We conjecture that the reason behind this is the fixed number of object pro-
posals (300, as mentioned in the original paper [13]) generated by the first
stage and refined by the second one. Despite lowering the input resolution,
and with it, the cost of computing the convolutional image features, the run
time of the pipeline ends up being bounded by the proposal generation, rank-
ing, and refinement, which are almost completely independent of the input
size in terms of their computational costs.

Note that because of their generic nature, the processing times of the depth
and instance-aware semantic segmentation components do not vary in signif-
icant ways across different KITTI sequences.

Figure 5.23 and Table 5.4 show the reconstruction accuracy of DynSLAM
as a function of the input resolution. The metric used is the same as in §5.1,

71

5. Experimental Results

Table 5.4: Reconstruction quality as a function of input resolution. The qual-
ity is computed as the mean of the disparity errors in the sequence’s frames.
See §5.1 for more details on evaluation metrics.

ELAS DispNet

Input Fused Input Fused

100% (1226× 370) 0.0729 0.0724 0.0761 0.0807
75% (919× 277) 0.0643 0.0689 0.0836 0.1031
50% (613× 185) 0.0690 0.0807 0.1238 0.1602
25% (306× 92) 0.1162 0.1624 0.5206 0.5989

100% 75% 50% 25%
Input resolution

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

of
in
co
rr
ec
t
pi
xe
ls

ELAS input

ELAS fused

DispNet input

DispNet fused

Figure 5.23: Input and reconstruction errors as functions of the input resolu-
tion. The evaluation was performed on sequence 6 from the KITTI odometry
benchmark. The box plots follow the Tukey convention, as described earlier
in this chapter.

72

5.4. Ablation Studies

namely, counting pixels whose disparity error is >3px and >5% of the ground
truth disparity as inaccurate.

As expected, the general trend is for the reconstruction error to increase as
the resolution of the input is decreased. Nevertheless, for ELAS-based recon-
struction, we notice a small increase in accuracy at 75%, as compared to 100%
resolution. A possible explanation for this result is the fact that reducing the
depth map resolution acts as a soft regularizer, reducing the impact of small
bumps and other artifacts on the overall reconstruction quality. 75% resolu-
tion could therefore be seen as a “sweet spot” for good reconstructions, by
reducing high-frequency noise associated with high-resolution depth maps,
while at the same time having sufficient resolution to produce a faithful re-
construction.

Another interesting effect is the fact that as resolution decreases, the recon-
struction (fused) error increases faster than the input error. This is due to the
accumulation of errors in the map: if the depth maps become too degraded,
artifacts begin to accumulate in the map, leading to errors over multiple sub-
sequent frames. That is, an isolated erroneous (but large) bump in a depth
map is registered as an input error only in the frame in which it is present.
However, once it gets fused into the map, it might take several frames until
subsequent measurements “smooth it out”.

In other words, the regularizing effect of fusing depth maps across multiple
frames can start to backfire when the quality of individual depth maps drops
below a certain threshold, leading to severe map corruption caused by the
cascading effects of artifacts from different input frames accumulating in the
map. As is clearly visible in Figure 5.23, this effect is much more pronounced
when using DispNet depth maps. This can be interpreted as a reflection of
the fact that the DispNet architecture was only trained using high-resolution
data. ELAS, not being reliant on training data, does not exhibit this problem,
leading to reasonable results even at 306× 92 resolution, i.e., less than QVGA.

Figure 5.24 shows a comparison between a reconstruction produced by our
system from reduced resolution (25%) input using ELAS depth maps, and
using DispNet depth maps. Note that while somewhat more sparse, the
reconstruction produced using ELAS is also less noisy and suffers from con-
siderably less distortion than the DispNet one. This is in accordance with the
quantitative results presented in Figure 5.23.

Figures 5.25 and 5.26 show comparisons between reconstructions computed
from full- and low-resolution input, using DispNet and ELAS depth maps,
respectively. ELAS depth maps produce overall sharper maps, even at low
resolution, while DispNet leads to distortion in numerous places, such as
the walls of the house. Note the circled car from the low-resolution recon-
structions. Its presence reflects the limitations of the instance-aware semantic
segmentation, whose false negative rate increases substantially when work-
ing with low-resolution input.

Similarly, Figure 5.27 shows vehicles reconstructed by DynSLAM under the
same configurations. Note that despite being incomplete and moderately
distorted, the ELAS-based reconstruction is clearer than the DispNet one,
which is nearly unrecognizable as a car due to the extensive noise. Note that

73

5. Experimental Results

(a) Reconstructed map using ELAS depth maps at 25% resolution.

(b) Reconstructed map using DispNet depth maps at 25% resolution.

Figure 5.24: A comparison of maps computed using reduced-resolution in-
put. Note that while both reconstructions are of significantly lower quality
than those produced from full-resolution input, the ELAS map is consider-
ably less noisy than the DispNet one, which exhibits strong distortions, espe-
cially on the building’s facade.

74

5.4. Ablation Studies

(a) DispNet depth
maps, full resolu-
tion

(b) DispNet depth
maps, 0.75× resolu-
tion.

(c) DispNet depth
maps, 0.50× resolu-
tion.

(d) DispNet depth
maps, 0.25× resolu-
tion.

Figure 5.25: DispNet-based reconstructions at full- and low-resolution. The
circled car represents a false negative of the instance-aware semantic segmen-
tation component, caused by lower-resolution input.

75

5. Experimental Results

(a) ELAS depth
maps, full resolu-
tion

(b) ELAS depth
maps, 0.75×
resolution.

(c) ELAS depth
maps, 0.50×
resolution.

(d) ELAS depth
maps, 0.25×
resolution.

Figure 5.26: ELAS-based reconstructions at full- and low-resolution. The
circled car represents a false negative of the instance-aware semantic segmen-
tation component, caused by lower-resolution input.

76

5.4. Ablation Studies

(a) Vehicle reconstructed using ELAS
depth maps at 25% resolution.

(b) Vehicle reconstructed using Disp-
Net depth maps at 25% resolution.

Figure 5.27: A comparison of vehicle reconstructions attempted using
reduced-resolution input.

these reconstructions, much like those from Figure 5.24, have been pruned by
the voxel garbage collection. Nevertheless, the DispNet reconstruction was
too distorted for the pruning process to have any meaningful effect.

In conclusion, we found that using ELAS to compute depth maps allows
DynSLAM to function with acceptable accuracy even on very low-resolution
input. On the other hand, while capable of producing qualitatively superior
vehicle reconstructions on full-resolution input, DispNet depth maps lead to
very poor performance on low-resolution (e.g., 25%) input.

5.4.2 Reduced Temporal Resolution

Given that the run time of our pipeline is dominated by the instance-aware
semantic segmentation phase which, as seen in the previous subsection, takes
roughly 250ms irrespective of the spatial resolution of the input, we present
a series of preliminary experiments investigating the possibility of avoiding
to run the computationally expensive segmentation every frame.

In other words, we consider the option of running cheaper components such
as visual odometry on every input frame, but only computing dense depth
maps, the instance-aware semantic segmentation, and the static map fusion
every k frames, with the hope that it would allow the system to operate
closer to real time, without significant losses in terms of mapping accuracy
and completeness.

Early experiments showed that the 3D object tracking performs rather poorly
even when it is run every two frames instead of every frame, but that the
static map fusion remains accurate even when performed every 3–5 frames.
Because of this behavior, we choose to focus on evaluating the quality of the
dense depth map, using the non-semantic (i.e., full-frame) method described
in §5.1. As such, we use the first 1000 frames of KITTI odometry sequence 09,
which contain almost no dynamic objects.

The results of this experiment are shown in Figure 5.28. As expected, on
its own, the accuracy of the reconstruction is not affected since the input
depth maps are themselves accurate. On the other hand, the reconstruction

77

5. Experimental Results

01 02 03 04 05 06 07 08 09 10 11 12
k (Fusion every kth frame)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

DispNet input

DispNet fused

(a) Reconstruction accuracy as a function of k, the frequency at which fusion is per-
formed.

01 02 03 04 05 06 07 08 09 10 11 12
k (Fusion every kth frame)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
om

pl
et
en
es
s

DispNet input

DispNet fused

(b) Reconstruction completeness as a function of k, the frequency at which fusion is
performed.

Figure 5.28: The impact of reduced temporal resolution on static map re-
construction accuracy and completeness. A value of k = 1 signifies fusion
performed every frame (the default case), k = 2, every two frames, etc.

completeness score starts to drop significantly once fusion is performed more
rarely than every 4–5 frames.

In conclusion, the high completeness and accuracy scores obtained even
when performing the static map fusion every two or three frames show that
it is not necessary to perform this operation at input frequency. In the future,
this insight could be used to improve the efficiency of similar systems, prior-
itizing tasks such as object tracking and planning to run on every frame, but
performing auxiliary tasks such as mapping with a lower frequency.

78

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The high-level aim of this thesis was to explore ways of building richer and
more robust maps of complex environments, with the end goal of empow-
ering further applications, such as three-dimensional object tracking, mo-
tion planning in urban environments, and detailed real-time visualizations,
thereby bringing fully autonomous vehicles one step closer to being a reality.

To this end, we designed and implemented DynSLAM, a novel dense map-
ping pipeline based on InfiniTAM [38] which is capable of robust operation
in challenging urban environments. In addition to building a static map of
its environment, DynSLAM also detects, tracks, and densely reconstructs the
dynamic objects encountered within.

Our pipeline achieves this by computing instance-aware semantic segmenta-
tions of its input frames, and using them to separate potentially dynamic
objects, such as vehicles, from the background. It then uses the sparse scene
flow to analyze the motion of the objects relative to the camera, classifying
them as static or dynamic, and reconstructing them in the process.

We also discussed the artifacts caused by the noise associated with estimat-
ing depth from stereo and presented a technique for reducing their impact,
thereby increasing the quality of the reconstructions produced by our system,
while also reducing their memory consumption by a significant margin.

We presented thorough quantitative and qualitative evaluations of our system
on a large number of real-world video sequences from the KITTI odometry
and tracking [19] benchmarks, comparing the performance and run time of
different configurations, and highlighting the system’s robustness to adverse
conditions such as heavy traffic, sudden lighting changes, and fast motion.

To the best of our knowledge, the system presented in this thesis is the first
dense mapping pipeline capable of simultaneously reconstructing the objects
encountered in an outdoor environment, in addition to the static map, in
near-real-time, while using only stereo input.

79

6. Conclusions and Future Work

6.2 Future Work

While developing DynSLAM, many possible avenues of improvement had to
be left out, in order to ensure that the core contributions were implemented
and evaluated in a thorough manner. This section will provide an overview
of some of the many ways in which DynSLAM’s performance, run-time, and
robustness could be improved in the future.

6.2.1 Performance Improvements

As discussed in Chapter 5, the main bottleneck of our system is the instance-
aware semantic segmentation, which is incapable of running at more than
4–5Hz, even on high-end hardware. Given that without this component, our
system can easily run at over 10Hz, any work towards improving end-to-
end performance should start here. Neural network architectures for non-
instance-aware semantic segmentation, such as ENet [58] can already run at
over 40Hz. Extending such architectures to perform instance-aware segmen-
tation could result in improved performance for DynSLAM.

Another possible trade-off worth investigating is using batching for CPU-
heavy operations, such as estimating disparity from stereo using ELAS. Given
that the implementation is single-core, it would be possible to increase the
system’s throughput by computing 2–3 depth maps in parallel, while also
introducing 1–2 frames of (acceptable) latency to the system.

6.2.2 Uncertainty Propagation

DynSLAM currently uses a simplistic model for measurement uncertainty,
which is formulated as a linear function of the inverse depth. Despite being
reasonably robust for our current use case, a more elaborate model could
help produce even more accurate reconstructions, reducing, or possibly elim-
inating, the need for map regularization.

While neither ELAS nor DispNet are capable of associating confidence scores
to the values in the computed disparity maps, methods such as [45] estimate
probability distributions over possible disparity values for every pixel, which
could potentially be passed on to future pipeline stages in order to more
rigorously model the voxel-wise confidence in the resulting reconstruction.

6.2.3 3D Pose Estimation

There are also numerous ways of improving the accuracy of the 2D and 3D
object tracking, which can lead to improved reconstructions. Currently, all
pose estimation procedures occur on a frame-to-frame basis. Augmenting
DynSLAM to track features across multiple frames, and to optimize object tra-
jectories over longer windows has the potential to yield improved reconstruc-
tions. Moreover, multi-frame methods could also enable support for tracking
objects across longer occlusions than is currently possible in DynSLAM.

Neural network-based methods for direct rigid body motion estimation from
point clouds, such as the SE3-Nets proposed by Byravan and Fox [7], would
be another approach worth exploring.

80

6.2. Future Work

6.2.4 Mapping

DynSLAM does not support loop closure detection and global map optimiza-
tion. While challenging to perform in the context of volumetric representa-
tions, map adjustments based on global optimization are still a key aspect
of building quality large-scale maps, and an important direction for further
development of DynSLAM. Kähler et al. [34] have shown how to extend the
InfiniTAM framework to enable loop closure detection and global refinement
using a submap-based approach.

Semi-dense SLAM methods [15] have shown great promise in terms of accu-
racy, scalability, and speed. Despite the fact that semi-dense maps are less
information-rich than dense ones, hybrid approaches which use, e.g., dense
representations for the roads and cars, but semi-dense ones for the rest of the
environment (trees, houses, and distant objects) may be able to effectively
bring out the best of both worlds.

6.2.5 Evaluation

As discussed in Chapter 5, the methods used for evaluating our system’s
performance could be improved in a number of ways.

First, due to its inherent nature, the KITTI dataset does not provide any
ground truth information on the shape of the dynamic objects apart from the
LIDAR, making the evaluation of their reconstructions difficult. This issue
could be addressed in the future by using either simulated datasets, such as
Virtual KITTI [18], or custom real-world datasets with ground truth object
shape information produced via precise laser scanning, following the work
of Rünz and Agapito [46].

Second, as described in [49], evaluating disparity maps based on LIDAR
ground truth in the camera’s frame is not optimal due to occlusions. That is,
certain objects directly visible to the LIDAR may not be visible to the camera,
resulting in systematic evaluation bias.

Possible ways of addressing this limitation include either manually adjust-
ing the ground truth LIDAR data to account for occlusions, or performing
the evaluation inside the LIDAR’s reference frame, as opposed to the cam-
era’s. The former method is used as part of the standard KITTI Stereo bench-
mark [49], and has the potential to be highly reliable1. Nevertheless, this ap-
proach is time-consuming, making it infeasible for correcting long sequences
consisting of thousands of frames, which are required for evaluating large-
scale mapping systems such as DynSLAM in a realistic manner. The second
method would involve computing virtual LIDAR-like point clouds of the re-
construction by adapting the raycasting component of InfiniTAM to function
similar to a LIDAR. This would therefore allow both the input depth frames,
as well as the fused map to be rendered from the point of view of the LIDAR,
allowing them to be compared directly to the ground truth, eliminating the
issues caused by occlusion.

1Note that the KITTI Stereo 2015 benchmark only contains 200 training and 200 test images.

81

6. Conclusions and Future Work

6.2.6 Segmentation

As discussed in Chapter 5, relying purely on semantic information for object
detection is not always reliable. The Multi-task Network Cascades [13] model
we employ often fails to detect bikes, vans, and larger trucks, especially in
difficult lighting conditions and under reduced resolution.

From a mapping perspective, if the undetected objects are not moving, they
are simply fused into the static map, without causing serious problems. How-
ever, if moving, they can corrupt the map, leaving behind noisy trails, as if
the reconstruction were performed using the standard fusion mode described
in §5.1.3, defeating the purpose of DynSLAM.

For this reason, the development of methods for effectively combining both
semantic, as well as motion cues for object detection is a promising area of
future research.

82

Bibliography

[1] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. Measuring the
objectness of image windows. IEEE transactions on pattern analysis and
machine intelligence, 34(11):2189–2202, 2012. [Cited on page 28.]

[2] Rares Ambruş, Nils Bore, John Folkesson, and Patric Jensfelt. Meta-
rooms: Building and maintaining long term spatial models in a dynamic
world. IEEE International Conference on Intelligent Robots and Systems,
(Iros):1854–1861, 2014. [Cited on pages 2 and 15.]

[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion. arXiv preprint arXiv:1511.00561, 2015. [Cited on pages 11 and 13.]

[4] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and
mapping (SLAM): Part I. IEEE Robotics and Automation Magazine,
13(3):108–117, 2006. [Cited on page 24.]

[5] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-
up robust features (SURF). Computer vision and image understanding,
110(3):346–359, 2008. [Cited on page 18.]

[6] Charles Bibby and Ian Reid. A hybrid SLAM representation for dy-
namic marine environments. Proceedings - IEEE International Conference
on Robotics and Automation, pages 257–264, 2010. [Cited on page 2.]

[7] Arunkumar Byravan and Dieter Fox. SE3-Nets: Learning Rigid Body
Motion using Deep Neural Networks. page 8, 2016. [Cited on pages 11 and 80.]

[8] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-
muzza, Ian D Reid, and John J Leonard. Past , Present , and Fu-
ture of Simultaneous Localization And Mapping : Towards the Robust-
Perception Age. 32(6):1–27, 2016. [Cited on page 24.]

[9] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Céline Teulière,
and Thierry Chateau. Deep MANTA: A Coarse-to-fine Many-Task Net-
work for joint 2D and 3D vehicle analysis from monocular image. 2017.
[Cited on page 11.]

83

Bibliography

[10] Wongun Choi. Near-online multi-target tracking with aggregated local
flow descriptor. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3029–3037, 2015. [Cited on page 11.]

[11] Brian Curless and Marc Levoy. A volumetric method for building com-
plex models from range images. In Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques, pages 303–312. ACM,
1996. [Cited on page 25.]

[12] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Christian Theobalt. BundleFusion: Real-time Globally Consistent 3D
Reconstruction using On-the-fly Surface Re-integration. Popl, pages 1–
16, apr 2016. [Cited on page 9.]

[13] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware Semantic Seg-
mentation via Multi-task Network Cascades. arXiv:1512.04412, pages
3150–3158, 2015. [Cited on pages 3, 11, 12, 13, 29, 30, 35, 71, and 82.]

[14] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner
Hazirbas, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and
Thomas Brox. Flownet: Learning optical flow with convolutional net-
works. IEEE International Conference on Computer Vision, pages 2758–2766,
2015. [Cited on page 23.]

[15] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-
Scale Direct Monocular SLAM, pages 834–849. Springer International Pub-
lishing, Cham, 2014. [Cited on page 81.]

[16] Thomas Faeulhammer, Rares Ambrus, Christopher Burbridge, Michael
Zillich, John Folkesson, Nick Hawes, Patric Jensfelt, Markus Vincze,
Thomas Fäulhammer, Christopher Burbridge, Michael Zillich, John
Folkesson, Nick Hawes, Patric Jensfelt, and Markus Vincze. Au-
tonomous Learning of Object Models on a Mobile Robot. IEEE Robotics
and Automation Letters, 2(1):1, 2016. [Cited on pages 2, 14, and 15.]

[17] James Fung and Steve Mann. Computer vision signal processing on
graphics processing units. In Acoustics, Speech, and Signal Processing,
2004. Proceedings.(ICASSP’04). IEEE International Conference on, volume 5,
pages V–93. IEEE, 2004. [Cited on page 30.]

[18] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual
worlds as proxy for multi-object tracking analysis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4340–
4349, 2016. [Cited on pages 16 and 81.]

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the KITTI vision benchmark suite. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 3354–3361, 2012. [Cited on pages 3, 35, 39, 49, 69, and 79.]

[20] Andreas Geiger, Martin Roser, and Raquel Urtasun. Efficient large-scale
stereo matching. In Asian conference on computer vision, pages 25–38.
Springer, 2010. [Cited on pages 3, 6, 21, and 35.]

84

Bibliography

[21] Andreas Geiger, Julius Ziegler, and Christoph Stiller. StereoScan: Dense
3d reconstruction in real-time. In 2011 IEEE Intelligent Vehicles Symposium
(IV), pages 963–968. IEEE, jun 2011. [Cited on pages 5, 6, 17, 35, 38, and 43.]

[22] Bernardes Vitor Giovani, Alessandro Correa Victorino, and Janito Vaque-
iro Ferreira. Stereo Vision for Dynamic Urban Environment Percep-
tion Using Semantic Context in Evidential Grid. IEEE Conference on In-
telligent Transportation Systems, Proceedings, ITSC, 2015-Octob:2471–2476,
2015. [Cited on page 36.]

[23] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE international con-
ference on computer vision, pages 1440–1448, 2015. [Cited on page 12.]

[24] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 580–587, 2014. [Cited on page 12.]

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org. [Cited on page 23.]

[26] Fatma Guney and Andreas Geiger. Displets: Resolving stereo ambigu-
ities using object knowledge. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4165–4175, 2015. [Cited on

page 6.]

[27] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik.
Simultaneous detection and segmentation. In European Conference on
Computer Vision, pages 297–312. Springer, 2014. [Cited on page 12.]

[28] David Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese. Ro-
bust real-time tracking combining 3D shape, color, and motion. The
International Journal of Robotics Research, 35(1-3):1–28, 2015. [Cited on page 10.]

[29] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping:
Using depth cameras for dense 3D modeling of indoor environments.
The International Journal of Robotics Research, 31(5):647–663, 2010. [Cited on

page 7.]

[30] Heiko Hirschmuller. Stereo processing by semiglobal matching and mu-
tual information. IEEE Transactions on pattern analysis and machine intelli-
gence, 30(2):328–341, 2008. [Cited on page 6.]

[31] A Huang, N Roy, A Bachrach, P Henry, M Krainin, D Maturana, and
D Fox. Visual Odometry and Mapping for Autonomous Flight Using an
RGB-D Camera. Springer Tracts in Advanced Robotics, 100:235–252, 2011.
[Cited on page 5.]

[32] ROS Industrial. 3d camera survey, http://rosindustrial.org/news/
2016/1/13/3d-camera-survey, 2016. [Cited on page 43.]

85

http://www.deeplearningbook.org
http://rosindustrial.org/news/2016/1/13/3d-camera-survey
http://rosindustrial.org/news/2016/1/13/3d-camera-survey

Bibliography

[33] Cansen Jiang, Danda Pani Paudel, Yohan Fougerolle, David Fofi, and
Cedric Demonceaux. Static-Map and Dynamic Object Reconstruction
in Outdoor Scenes Using 3-D Motion Segmentation. IEEE Robotics and
Automation Letters, 1(1):324–331, 2016. [Cited on pages 2, 3, 14, and 15.]

[34] Olaf Kähler, Victor A. Prisacariu, and David W. Murray. Real-Time Large-
Scale Dense 3D Reconstruction with Loop Closure. Number 4 in Lecture
Notes in Computer Science, pages 500–516. Springer International Pub-
lishing, Cham, nov 2016. [Cited on pages 9 and 81.]

[35] Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim
Weyrich, and Andreas Kolb. Real-time 3D Reconstruction in Dynamic
Scenes using Point-based Fusion. 3Dv, pages 1–8, 2013. [Cited on page 7.]

[36] Deyvid Kochanov, Aljosa Osep, Jorg Stuckler, and Bastian Leibe. Scene
flow propagation for semantic mapping and object discovery in dynamic
street scenes. 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), (3):1785–1792, 2016. [Cited on pages 2, 14, and 15.]

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012. [Cited on pages 11 and 30.]

[38] Olaf Kähler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin Sun, Philip
Torr, and David Murray. Very High Frame Rate Volumetric Integration
of Depth Images on Mobile Devices. IEEE Transactions on Visualization
and Computer Graphics, 21(11):1241–1250, 2015. [Cited on pages 3, 8, 9, 25, 28, 36, 41, 58,

and 79.]

[39] Karel Lebeda, Simon Hadfield, and Richard Bowden. 2D or not 2D:
Bridging the gap between tracking and structure from motion. pages
642–658, 2014. [Cited on pages 3 and 10.]

[40] Karel Lebeda, Simon Hadfield, and Richard Bowden. Dense Rigid Re-
construction from Unstructured Discontinuous Video. In 2015 IEEE Inter-
national Conference on Computer Vision Workshop (ICCVW), volume 2016-
Febru, pages 814–822. IEEE, dec 2015. [Cited on page 10.]

[41] Philip Lenz, Julius Ziegler, Andreas Geiger, and Martin Roser. Sparse
scene flow segmentation for moving object detection in urban environ-
ments. In 2011 IEEE Intelligent Vehicles Symposium (IV), volume 44, pages
926–932. IEEE, jun 2011. [Cited on pages 11 and 36.]

[42] Peidong Liu, Lionel Heng, Torsten Sattler, Andreas Geiger, and Marc
Pollefeys. Direct Visual Odometry for a Fisheye-Stereo Camera. 2017.
[Cited on pages 40 and 41.]

[43] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolu-
tional Networks for Semantic Segmentation. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 3431–3440, 2015.
[Cited on page 11.]

86

Bibliography

[44] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110, 2004. [Cited

on pages 18 and 20.]

[45] Wenjie Luo, Alexander G. Schwing, and Raquel Urtasun. Efficient Deep
Learning for Stereo Matching. Conference on Computer Vision and Pattern
Recognition, pages 5695–5703, 2016. [Cited on page 80.]

[46] Martin Rünz and Lourdes Agapito. Co-Fusion : Real-time Segmentation,
Tracking and Fusion of Multiple Objects. Icra, pages 4471–4478, 2017.
[Cited on pages 14, 16, and 81.]

[47] Nikolaus Mayer, Eddy Ilg, Philip Häusser, Philipp Fischer, Daniel Cre-
mers, Alexey Dosovitskiy, and Thomas Brox. A Large Dataset to Train
Convolutional Networks for Disparity, Optical Flow, and Scene Flow
Estimation. pages 4040–4048, 2015. [Cited on pages 7, 21, 22, 30, and 35.]

[48] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leuteneg-
ger. SemanticFusion: Dense 3D Semantic Mapping with Convolutional
Neural Networks. Bayesian Forecasting and Dynamic Models, 22(2):1–694,
sep 2016. [Cited on pages 7 and 8.]

[49] Moritz Menze and Andreas Geiger. Object scene flow for autonomous
vehicles. pages 3061–3070, 2015. [Cited on pages 6, 22, 52, 53, 64, and 81.]

[50] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-
slam: a versatile and accurate monocular slam system. IEEE Transactions
on Robotics, 31(5):1147–1163, 2015. [Cited on page 5.]

[51] Raúl Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions on
Robotics, 2017. [Cited on page 5.]

[52] Richard A Newcombe, Dieter Fox, and Steven M Seitz. DynamicFusion:
Reconstruction and Tracking of Non-rigid Scenes in Real-Time. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015. [Cited on page 8.]

[53] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, and Andrew Fitzgibbon. KinectFusion: Real-
time dense surface mapping and tracking. 2011 10th IEEE International
Symposium on Mixed and Augmented Reality, ISMAR 2011, pages 127–136,
2011. [Cited on pages 8, 25, and 30.]

[54] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison.
DTAM: Dense tracking and mapping in real-time. Proceedings of the IEEE
International Conference on Computer Vision, pages 2320–2327, 2011. [Cited

on page 24.]

[55] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stam-
minger. Real-time 3D Reconstruction at Scale Using Voxel Hashing.
ACM Trans. Graph., 32(6), 2013. [Cited on pages 3, 8, 9, 14, 25, 27, 43, 44, and 47.]

87

Bibliography

[56] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of
the 2004 IEEE Computer Society Conference on, volume 1, pages I–I. Ieee,
2004. [Cited on page 17.]

[57] Peter Ondruska, Pushmeet Kohli, and Shahram Izadi. MobileFusion:
Real-Time Volumetric Surface Reconstruction and Dense Tracking on
Mobile Phones. IEEE Transactions on Visualization and Computer Graphics,
21(11):1251–1258, 2015. [Cited on page 8.]

[58] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culur-
ciello. ENet: A Deep Neural Network Architecture for Real-Time Se-
mantic Segmentation. Iclr2017, pages 1–10, 2016. [Cited on pages 12 and 80.]

[59] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross.
Surfels: Surface elements as rendering primitives. In Proceedings of
the 27th annual conference on Computer graphics and interactive techniques,
pages 335–342. ACM Press/Addison-Wesley Publishing Co., 2000. [Cited

on page 7.]

[60] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural
network. In Advances in neural information processing systems, pages 305–
313, 1989. [Cited on page 1.]

[61] Victor Adrian Prisacariu, Olaf Kähler, Stuart Golodetz, Michael
Sapienza, Tommaso Cavallari, Philip HS Torr, and David W Murray. In-
finitam v3: A framework for large-scale 3d reconstruction with loop
closure. arXiv preprint arXiv:1708.00783, 2017. [Cited on page 9.]

[62] N Dinesh Reddy, Prateek Singhal, Visesh Chari, and K Madhava Krishna.
Dynamic Body VSLAM with Semantic Constraints. pages 1897–1904,
2015. [Cited on page 14.]

[63] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015. [Cited

on pages 12 and 29.]

[64] Akihito Seki and Marc Pollefeys. SGM-Nets: Semi-global matching with
neural networks. IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), (1):231–240, 2017. [Cited on page 7.]

[65] Sunando Sengupta, Eric Greveson, Ali Shahrokni, and Philip HS Torr.
Urban 3d semantic modelling using stereo vision. pages 580–585, 2013.
[Cited on pages 2 and 52.]

[66] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014. [Cited on page 11.]

[67] Randall C Smith and Peter Cheeseman. On the representation and esti-
mation of spatial uncertainty. The international journal of Robotics Research,
5(4):56–68, 1986. [Cited on page 23.]

88

Bibliography

[68] Jörg Stückler and Sven Behnke. Model learning and real-time tracking
using multi-resolution surfel maps. In AAAI, 2012. [Cited on page 7.]

[69] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and
Arnold WM Smeulders. Selective search for object recognition. Inter-
national journal of computer vision, 104(2):154–171, 2013. [Cited on page 12.]

[70] V. Vineet, O. Miksik, M. Lidegaard, M. Nießner, S. Golodetz, V. A.
Prisacariu, O. Kähler, D. W. Murray, S. Izadi, P. Pérez, and P. H. S. Torr.
Incremental dense semantic stereo fusion for large-scale semantic scene
reconstruction. In 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 75–82, May 2015. [Cited on pages 14, 25, 43, and 52.]

[71] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piecewise rigid
scene flow. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1377–1384, 2013. [Cited on page 15.]

[72] Trung-Dung Vu, Olivier Aycard, and Nils Appenrodt. Online Localiza-
tion and Mapping with Moving Object Tracking in Dynamic Outdoor
Environments. Intelligent Vehicles Symposium, 2007 IEEE, pages 190–195,
2007. [Cited on page 2.]

[73] Thibaut Weise, Thomas Wismer, Bastian Leibe, and Luc Van Gool. In-
hand scanning with online loop closure. In 2009 IEEE 12th International
Conference on Computer Vision Workshops, ICCV Workshops 2009, number
April, pages 1630–1637, 2009. [Cited on page 7.]

[74] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard,
and John McDonald. Robust real-time visual odometry for dense rgb-
d mapping. In IEEE International Conference on Robotics and Automation,
ICRA, 2013. [Cited on page 8.]

[75] Thomas Whelan, Michael Kaess, Maurice Fallon, Hordur Johannsson,
John Leonard, Thomas Whelan, John Mcdonald, Michael Kaess, Maurice
Fallon, Hordur Johannsson, and John J Leonard. Kintinuous : Spatially
Extended KinectFusion. 2012. [Cited on page 8.]

[76] Thomas. Whelan, Michael. Kaess, Hordur. Johannsson, Maurice. Fallon,
John. J. Leonard, and John. McDonald. Real-time large scale dense RGB-
D SLAM with volumetric fusion. The International Journal of Robotics
Research, 34(4-5):598–626, 2014. [Cited on pages 8, 9, and 26.]

[77] Thomas Whelan, Stefan Leutenegger, Renato F Salas-moreno, Ben
Glocker, and Andrew J Davison. ElasticFusion : Dense SLAM With-
out A Pose Graph. Robotics: Science and Systems, 2015(December), 2015.
[Cited on pages 7, 8, and 9.]

[78] Artur Wilkowski, Tomasz Kornuta, Maciej Stefańczyk, and Włodzimierz
Kasprzak. Efficient generation of 3D surfel maps using RGB-D sensors.
International Journal of Applied Mathematics and Computer Science, 26(1):99–
122, 2016. [Cited on page 8.]

89

Bibliography

[79] Jure Žbontar and Yann Le Cun. Computing the stereo matching cost
with a convolutional neural network. Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, 07-
12-June(1):1592–1599, 2015. [Cited on page 7.]

[80] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu. Octree-based
fusion for realtime 3d reconstruction. Graphical Models, 75(3):126–136,
2013. [Cited on pages 8 and 9.]

[81] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data association for
multi-object tracking using network flows. 2008 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1–8, 2008. [Cited on page 37.]

[82] Lv Zhaoyang. Kinfuseg: a dynamic slam approach based on kinect
fusion. Department of Computing, Imperial College London, London, England,
Msc Thesis, 2013. [Cited on pages 3, 14, and 15.]

90

	Contents
	Introduction
	Motivation
	Contributions
	Outline

	Related Work
	Visual Odometry
	Depth from Stereo
	Dense Mapping
	Surfel-based Methods
	Volumetric Methods
	Improving the Scalability of Volumetric Fusion

	Tracking
	Semantic Segmentation and Object Detection
	Dense SLAM for Dynamic Environments

	Background
	Visual Odometry
	Feature Matching
	Egomotion Estimation

	Depth from Stereo
	Overview
	Efficient Large-scale Stereo (ELAS)
	DispNet

	Dense Mapping
	Relation to Simultaneous Localization and Mapping
	The KinectFusion Model
	Voxel Block Hashing

	Instance-aware Object Segmentation
	General-Purpose GPU Programming

	Dynamic Reconstruction
	Overview
	2D Object Tracking
	3D Object Tracking
	Coarse Alignment using RANSAC
	Pose Refinement Using Direct Image Alignment

	Volumetric Fusion in Dynamic Environments
	Map Regularization

	Experimental Results
	Reconstruction Quality
	Methodology
	Experimental Results on the KITTI Odometry Sequences
	Experimental Results on the KITTI Tracking Sequences

	Map Regularization
	Tracking Accuracy
	Ablation Studies
	Reduced Spatial Resolution
	Reduced Temporal Resolution

	Conclusions and Future Work
	Conclusions
	Future Work
	Performance Improvements
	Uncertainty Propagation
	3D Pose Estimation
	Mapping
	Evaluation
	Segmentation

	Bibliography

