
Learning Rich
Representations for

Robot State Estimation

by

Ioan Andrei Bârsan

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Department of Computer Science
University of Toronto

© Copyright by Ioan Andrei Bârsan 2024

ii

Abstract

Learning Rich Representations for Robot State Estimation

Ioan Andrei Bârsan
Doctor of Philosophy

Department of Computer Science
University of Toronto

2024

Mobile robots, such as self-driving vehicles, need to operate safely and autonomously in a wide range of

environments. This requires an autonomy software stack with robustness built into it at every level. At the

root of every decision that a robot makes is its ego-state estimation: establishing where the robot is, how its

actuators are positioned, and the related dynamics.

As the scale and complexity of real-world robotic systems continue to grow, many research questions

remain open: How do we design state estimation systems that are performant, interpretable, and scalable?

How sensitive are complex robotic systems to state estimation failures? Can we mirror recent trends in the

broader field of deep learning and improve robot localization by learning on large datasets?

This thesis encompasses a line of work which analyzes these questions by studying the robustness of

robotic systems at the state estimation level through the lens of robot localization. In the first part of the

thesis, we propose a way to formulate localization as an online histogram filtering problem and study the im-

portance of learning task-specific representations and data-driven compression for interpretability and scal-

ability, respectively. In the second part of the thesis, we study state estimation from a systems perspective

by analyzing the impact of localization failures on downstream tasks and propose a perception architecture

that improves resilience to this family of errors. We continue our analysis by focusing on the impact of large

datasets on localization and present Pit30M, a new large-scale localization dataset that helps us draw novel

insights into global localization thanks to its highly accurate ground truth.

The approaches discussed in this thesis provide insights into how to build accurate and resilient state es-

timation systems, how to evaluate them holistically in terms of their impact on overall system performance,

and how to design localization and mapping systems that scale effortlessly to nation-sized maps.

iii

Acknowledgements

The journey I undertook during my PhD was challenging yet highly rewarding, and I am deeply grateful to
all who supported me throughout.

Of course, I would not be writing this thesis if my advisor, Raquel Urtasun, hadn’t had the faith to take
me in as a graduate student back in 2017. Her supportive nature, coupled with her unbridled, contagious
excitement for research, made the difficult decision to move to a new continent much easier.

I am also thankful to Sanja Fidler and David J Fleet, my other committee members, for the numerous
fascinating and inspiring conversations. Sanja’s questions always encouraged me to stay up to date with the
latest advances in computer vision. David always encouraged me to look at things from new perspectives I
had never considered before. Your feedback and support have helped shape the way I look at research and
the kinds of questions I ask. I would also like to thank Professors Florian Shkurti and Luca Carlone for serv-
ing as external examiners for my PhD, providing me with insightful, actionable feedback, and Professor Mar-
sha Chechik for being a kind, encouraging, and supportive mentor. Candyce, your help has been invaluable
in turning all the key milestones of this PhD into concrete events on everyone’s calendars; thank you!

I would like to thank Shenlong Wang, in particular, for being my friend and for mentoring me during
my first few years at the University of Toronto and Uber ATG. Shenlong has always encouraged and sup-
ported me to become an independent scientist, and he has done a fantastic job making me feel welcome in
Toronto and our research lab. I will never forget the first time we met during the Fall of 2017 in the Sand-
ford Fleming building and how exciting and fun it was to talk to you about research over lunch as we went
to grab some delicious sandwiches at a place near College & Spadina, which has since shut down. I am like-
wise grateful for all the friendships I built along the way with fellow students and staff alike—Wei-Chiu Ma,
Namdar Homayounfar, Jingkang Wang, Joyce Yang, Ze Yang, Yun Chen, Gellért Máttyus, Kelvin Wong,
Jason Siefken, Ignacio Tartavull, Luisa San Martin, Davi Frossard, Siva Manivasagam, Min Bai, Inmar
Givoni, Ali Athar, Sergio Casas, Katie Luo, Dominic Cheng, Justin Liang, Arnaud Bonnet, Elaine Papa,
Renjie Liao, Mengye Ren, Wenjie Luo, Alex Cui, Sean Segal, Thomas Li, Yuwen Xiong, Bin Yang, Wenyuan
Zeng, Chris Zhang, James Tu, Frieda Rong, Ben Argo, Jack Fan, Jashan Shewakramani, Xinkai Wei, Sasha
Doubov, John Phillips, Can Cui, George Chen, Andrei Pokrovsky, Simon Suo, Annie Zhang, Abbas Sadat,
and Quinlan Sykora. I feel blessed to have worked with so many interesting, brilliant people; you are all
truly wonderful.

I also cherish the long-lasting friendships I built over the years at ETH Zurich: Taivo Pungas, who taught
me about meta-cognition and who motivated me to learn more about how to turn ML into products, Tom
Sydney Kerckhove for helping me understand the importance of attention to detail and for helping me
not be satisfied with shallow explanations, and Bernhard Kratzwald for his lovely sense of humor and his
unrivaled ability to have fun even while working on the most technologically demanding machine learning
projects. These friendships have been instrumental in my development as a scientist and as a person. Thank
you, likewise, to my amazing Romanian friends, Dragoș, Teo, Alex B., Vlad G., Cristina, Rareș, Cristi,
Ionuț, Maria, Paul, Vlad Ț., Alex I., Tudor, Horia, and Codrin, for being by my side all these years and
for always making me feel excited to come back and visit Romania!

I am also deeply grateful to Cătălin Tufănaru, who encouraged me to keep pushing when I felt like giving
up and who encouraged me to seek and to embody phronesis.

Of course, thank you, Julieta, for being by my side for years throughout the process, supporting me day
and night! Not a day goes by when I am not grateful for having your lovely sense of humor and amazingly
inspiring brains by my side. Last but most certainly not least, I wish to thank my parents, Anca and Lucian,

iv

for being incredible engineering role models and for being patient with me before I could develop my own
patience. This thesis is dedicated to them.

Most of the work in this thesis was performed on or in the vicinity of the University of Toronto campus
in downtown Toronto. I wish to acknowledge that the land on which the University operates has been the
traditional land of the Huron-Wendat, the Seneca, and most recently, the Mississaugas of the Credit River.
Today, this meeting place is still the home to many Indigenous people from across Turtle Island and I am
grateful to have the opportunity to work on this land.

v

Contents

1 Introduction 1
1.1 Current Challenges 2
1.2 Key Contributions 4
1.3 Relation to Published Work 6
1.4 Other Research During My PhD Study 7
1.4.1 Simultaneous Localization and Mapping 7
1.4.2 Sensor Simulation and Domain Gap Analysis 8

1.5 About This Thesis 8

2 Background and Related Work 9
2.1 3D Geometry Notation 10
2.2 LiDAR Sensors 11
2.3 Self-Driving Vehicles 12
2.4 Localizing Ground Robots using Histogram Filtering 16
2.4.1 Recursive Bayesian Filtering 18
2.4.2 Online 3-DoF Localization for Ground Robots 18
2.4.3 Energy Terms Used in This Thesis 19
2.4.4 Efficient Inference 20

2.5 Related Work 22
2.5.1 Reference-Based Localization 23
2.5.2 Geometry-Based Localization 26
2.5.3 Place Recognition 27
2.5.4 Pose Regression Methods 30

vi

2.5.5 Lightweight Map-Based Localization 31
2.5.6 Dense High-Definition Maps 32
2.5.7 Simultaneous Localization and Mapping (SLAM) 34
2.5.8 Visual and LiDAR Odometry 35
2.5.9 Matching Networks 36
2.5.10 Compression 36
2.5.11 Perception, Prediction, and Planning 38

3 Localization with Sparse Semantic Maps 41
3.1 Introduction 41
3.2 Lightweight HD Mapping 43
3.3 Localization as Bayes Inference with Deep Semantics 44
3.3.1 Probabilistic Pose Filter Formulation 45
3.3.2 Inference and Learning 47
3.4 Experimental Evaluation 48
3.4.1 Dataset 48
3.4.2 Implementation Details 48
3.4.3 Localization 50
3.5 Conclusion 53

4 LiDAR Matching with Deep Representations 53
4.1 Introduction 54
4.2 Learning LiDAR Representations for Localization 55
4.2.1 Learning 57
4.3 Experimental Results 57
4.4 Conclusion 61

5 Task-Specific Map Compression 63
5.1 Overviews and Motivation 63
5.2 End-to-End Compressed Localization 64
5.2.1 Overview 64
5.2.2 Deep Localization with Map Compression 65
5.2.3 Training 68

vii

5.3 Experimental Results 69
5.3.1 Datasets 69
5.3.2 Experimental Setup 70
5.3.3 Matching Performance 72
5.3.4 Online Localization 73
5.3.5 Qualitative Results 75
5.3.6 Storage Analysis 75
5.3.7 Discussion 76

6 Towards Full-System Understanding: Joint Localization and Perception
77
6.1 Overview 77
6.2 Background 78
6.3 The Effects of Localization Error 79
6.3.1 Experimental setup 80
6.3.2 Results 82

6.4 Joint Localization, Perception, and Prediction 82
6.4.1 System Desiderata 82
6.4.2 Designing an LP2 System 84
6.4.3 Learning 85

6.5 Experiments 86
6.6 Conclusion 89
6.6.1 Future Work in Joint Perception and Localization 89
6.6.2 Limitations of the Proposed Online Localization Approaches 90

7 Large-Scale Analysis: The Pit30M Dataset 92
7.1 Overview 92
7.1.1 Other benefits 94

viii

7.2 Current Localization Datasets 95
7.3 Pit30M: Global Localization at City Scale 96
7.4 Case Study: Benchmarking Large-Scale Global Localization 99
7.5 Case Study: Experiments 102
7.5.1 Evaluation Protocol 102
7.5.2 Benchmarked methods 102
7.5.3 Results 103
7.5.4 Analysis 105
7.5.5 Oxford Robotcar 109

7.6 Practical Matters: Releasing a Petabyte-Scale Dataset 110
7.6.1 Format and Structure 111
7.6.2 Hosting 113
7.6.3 Anonymization 114
7.6.4 Dataset SDK 115

7.7 Conclusion 115

8 Conclusions and Future Directions 117
8.1 Summary 117
8.2 Future Work 119
8.2.1 Simulation 120

8.3 Outlook 123

Bibliography 125

ix

List of Tables

1.1 Challenges tackled by each chapter. Each chapter tackles one
or more of the key challenges in autonomous mobile robots, which are
highlighted in the intro. 6

2.1 Different satellite-based positioning solutions and their main traits for
mobile systems. Based on a Table from (Joubert, Reid, and Noble 2020). 25

3.1 Ablation study on the impact of each component of our lightweight
localization system. 49

3.2 Quantitative results for lightweight localization using smoothness met-
rics. 50

3.3 Quantitative results on localization accuracy. Here, ‘Ours’ refers to
the model proposed in this paper using dynamics, GPS, lanes, and
signs, in a probabilistic framework. 51

3.4 Ablation studies on inference settings with full observations (Lane+GPS+Sign) 52

4.1 Localization Performance on the Highway-LidarA dataset.
Please note that the numbers in this thesis and the arXiv version of
the paper are more up-to-date than those in the CoRL proceedings
as they incorporate a small bugfix. 60

4.2 Cross-dataset generalization. Localization Performance on Misc-
LidarB trained on Highway-LidarA. 61

5.1 Online localization performance on the highway dataset. The
proposed learning-based compression method outperforms all tradi-
tional, off-the-shelf approaches, while requiring less storage by sev-
eral orders of magnitude. 72

5.2 Ablation studies on matching performance. Optimizing jointly
for both map reconstruction and matching greatly reduces the stor-
age requirements compared to lossless codecs such as PNG, but task-
specific supervision leads to a superior compression rate. 73

x

5.3 Online localization performance on the urban dataset. Con-
sistent with our analysis at the matcher level, the proposed approach
exceeds off-the-shelf compression methods in terms of localization met-
rics, while approaching the “oracle” performance of lossless represen-
tations. 73

5.4 Ablation studies on the urban dataset. We compare a map re-
construction loss with our task-specific matching loss, each under two
different configurations of our binary code generator. 75

5.5 Localization performance on our urban dataset using maps
of reduced spatial resolution. We used 5cm/px in the submission.
Map storage is measured in bits/m2 in order to account for different
resolutions (bits-per-pixel (bpp) are no longer meaningful if the area
of a pixel can change). Ours refers to our 16× downsampling method.
JPG quality is 50. 75

5.6 Estimated map storage requirements using various compres-
sion methods. Estimates of road network length based on numbers
provided by the US Bureau of Transportation Statistics. 76

6.1 Motion planning evaluation using different pose estimates and
actor predictions. For the P2 and Planning poses: GT denotes ground
truth (the pose was not altered); N denotes that localization noise was
added (translation and rotation sampled uniformly at random from
[−0.5m,+0.5m] and [−1.5deg,+1.5deg], respectively). ‘Big’ refers to
the largest width Pixor Embedding Net from Fig 6.4, and ‘Tiny’ refers
to the smallest. Bold denotes the best results (within an epsilon thresh-
old), and italics the second-best results. 88

6.2 Localization inference time comparison. While being nearly iden-
tical in terms of matching accuracy when comparing models with re-
call @ 2 performance similar to the system in Chap. 4, the proposed
approach is much faster due to a more efficient architecture and shar-
ing computation with the perception backbone. 89

7.1 Comparison of datasets for large-scale visual localization. ‡The
dataset has >20M images, but we consider only the frontal camera
to make it comparable to our dataset. ∗Including synthesized views.
∗∗The number of query images localized manually. S denotes the num-
ber of sessions. ‘m’ is short for months. 96

7.2 Semantic labels in Pit30M. We provide these labels to help re-
searchers categorize and understand the performance of localization
algorithms. 99

7.3 Detailed localization results for retrieval-based approaches.
We report the percent of correct predictions within different distance
thresholds, and mean and median over the entire query set. Top: Image-
based methods. Bottom: LiDAR-based methods. 104

xi

7.4 Comparison of LiDAR-based retrieval methods on the Ox-
ford RobotCar dataset. Our method achieves competitive results
at lower inference times. All times benchmarked on an NVIDIA GTX
1080Ti GPU. 110

xii

List of Figures

2.1 3D LiDAR Operating Principle. Illustration from (Rosique et al.
2019). 12

2.2 Data flow diagram in typical self-driving software systems.
This figure depicts an approximation of the components which encom-
pass an SDV. eHMI stands for external human-machine interface, and
encompasses all SDV-specific methods that a robotic driver can use
to communicate with other traffic participants, like specific sound alerts,
custom lights, displays, etc. 13

2.3 The evolution of reference-based localization error in the 20th century,
from leveraging stars to the modern GPS. Figure from Reid et al. (Reid
et al. 2020) 23

3.1 System architecture. Given the camera image and LiDAR sweep
as input, we first detect lanes in the form of a truncated inverse dis-
tance field, and detect signs as a bird’s-eye view (BEV) probability
map. The detection output is then passed through a differentiable rigid
transform layer (Jaderberg et al. 2015) under multiple rotational an-
gles. Finally, the inner-product score is measured between the inferred
semantics and the map. The probability score is merged with GPS
and vehicle dynamics observations, and the inferred pose is computed
from the posterior using soft-argmax. The camera image on the left
contains an example of a sign used in localization, highlighted with
the red box. 42

3.2 The process used to construct our traffic sign maps. We first
detect signs in 2D using semantic segmentation in the camera frame
and then use the LiDAR points to localize the signs in 3D. Mapping
can aggregate information from multiple passes through the same area
using the ground truth pose information and can function even in low
light, as highlighted in the middle row, where the signs are correctly
segmented even at night time. We use this information to build the
traffic sign map automatically. 43

xiii

3.3 Qualitative results. A bird’s-eye view of the last five LiDAR sweeps
(left), which are used for the lane detection, together with the obser-
vation probabilities and the posterior (middle), followed by a compar-
ison between the localization result, the ground truth pose, and GPS
(right). The (x, y)-resolution of each probability distribution is 1.5m
laterally (vertical) and 15m longitudinally (horizontal). 44

3.4 Dataset sample and inference results. Our system detects signs
in the camera images (note the blue rectangle on the right side of the
first image) and projects the sign’s points in a top-down view using
LiDAR (second image). It uses this result in conjunction with the lane
detection result (third image) to localize against a lightweight map
consisting of just signs and lane boundaries (fourth image). 46

3.5 Best hyperparameters for each method 47
3.6 Localization Error as a function of travel distance. 51

4.1 LiDAR intensity map. An example of a bird’s-eye view (BEV) Li-
DAR intensity map used by our system. It encodes rich information
on the environment’s appearance and its geometric structure. The or-
ange square highlights an example of geometric structure captured by
the BEV images—the corner of a building, while the green one high-
lights an example of intensity structure—painted lane lines and cross-
walks. 55

4.2 Deep LiDAR localizer architecture. The full architecture of the
proposed localizer, which incorporates our learned LiDAR matching
component and outputs a 3-DoF pose at each time step. The top Deep
Net is fm, while the bottom represents fo. 56

4.3 One example of the learned input and map embeddings. The
neural networks learn to focus on reliable cues while suppressing un-
reliable ones and dynamic objects. 56

4.4 LiDAR Sensor Transfer. A comparison between the two LiDAR
sensors. Left: the different intensity profiles of their sweeps over the
same location; right: the color-mapped intensity images. 57

4.5 Quantitative Analysis. From left to right: localization error vs trav-
eling distance; lateral error histogram per each timestamp; longitu-
dinal histogram per each step. 58

4.6 Cumulative error curve for the deep LiDAR localizer on Highway-
LidarA. From left to right: lateral, longitudinal, total translational
error. 58

4.7 Emergent Behavior in Deep LiDAR Matching. We notice that
when translating the raw LiDAR (left) into the deep embedding (right),
the neural network learns to remove objects that are not reliable enough
for localization, such as cars, despite never being explicitly trained to
do so 61

xiv

5.1 End failure rate for localization under different map compres-
sion settings. Lower and to the left is better. Multiple readings for
WebP and JPG represent different quality factors specified during en-
coding. The numbers represent the precise map storage bitrates. 64

5.2 Joint compression and LiDAR matching architecture. The pro-
posed approach embeds a compression module in the map network
and trains it jointly with everything else. This allows our method to
discard information irrelevant to LiDAR localization, bringing about
substantial gains in compression efficiency. 65

5.3 Our compression module. We obtain gradients for training with
a straight-through estimator. 67

5.4 Top-1 Matching Performance vs. Bits per Pixel. The diagram
plots how well we can register an observation to the prior map, as a
function of how well the map is compressed. Higher and more to the
left is better. 70

5.5 Qualitative results from our highway dataset. From left to right:
(1) the original map, (2) its computed deep embedding, (3) the com-
pressed embedding, (4) online LiDAR observation, (5) its embedding,
and (6) the localization result. 74

6.1 A scenario where a small localization error results in a col-
lision. The top row visualizes the first time step, and the bottom row
visualizes a later time step where a collision occurs. Black rectan-
gles represent reality; the pale blue rectangles are forecasted object
trajectories. The SDV is the red rectangle. The samples predicted by
the motion planner are shown as orange lines. The three columns vi-
sualize different variants of the same scenario. (Left) The planned tra-
jectory of the SDV when there is no localization error. (Middle) What
the SDV “thinks” is happening, based on its estimated pose that has
an error of (x, y, yaw) = (10 cm, 0 cm, 1.5 deg). (Right) What the
SDV is actually doing when subject to the pose error; this is the same
trajectory as shown in the middle image, but rigidly transformed so
that the initial pose agrees with the GT pose. The collision (red cir-
cle) occurs because the yellow vehicle is not perceived at t = 0 due
to occlusion (by the cyan vehicle); the localization error then causes
the SDV to go into the lane of opposite traffic, which results in a col-
lision. 79

xv

6.2 The effects of localization error on perception-prediction and
motion planning. (Top) The effects of perturbing the ego-pose on
P2. SFDE is the mean displacement error across all samples at the
5s mark as defined in (Casas, Gulino, Suo, Luo, et al. 2020), and mAP@0.7
is the mean average precision evaluated at an IOU of 0.7. (Bottom)
The effects of perturbing the ego-pose on planning. The collision rate
is the percentage of examples for which the planned path collides with
another vehicle or pedestrian within the 5s simulation, and ℓ2 human
is the distance between the planned path and the ground truth human-
driven path at the 5s mark. 82

6.3 The architecture of the combined localization and perception-
prediction (LP2) model. We integrate a LiDAR matching com-
ponent into a perception architecture, which gives it the ability to re-
cover from upstream localization problems. By sharing feature maps
between the two tasks, we can achieve this with very little computa-
tional overhead. 83

6.4 Localizer embedding runtime vs. recall. The localization per-
formance and runtime of the single-task (i.e., sequential) and multi-
task (i.e., joint) localization methods. Faster inference is achieved by
narrower and shallower networks for the online LiDAR embedding.
Note that the Y axes are focused on narrow intervals to improve vis-
ibility; on an absolute scale, the impact of reducing the network ca-
pacity is small. 87

7.1 The proposed new localization dataset, Pit30M. Top left: The
geographic extent of the dataset. Each square is 1 km2, for a total area
of about 50 km2 plus over 20 km of highway in the Pittsburgh Metropoli-
tan Area. Bottom left: The temporal span of our dataset. The back-
ground colors code for night, day, and astronomical, nautical, and civil
twilight (resp. dawn). Right: Examples of images and LiDAR point
clouds taken in the same place at different times. These trips all hap-
pened between February 2017 and March 2018. 92

7.2 Probability density functions (PDFs) for metadata in Pit30M.
For a complete description of these tags, please refer to Table 7.2 98

7.3 LiDAR representations benchmarked in this work. (a) Raw
point cloud (not used by any method). (b) Point cloud after ground
plane removal and downsampling to 4,096 points (Uy and Lee 2018;
W. Zhang and Xiao 2019; Z. Liu et al. 2019). (c) BEV voxelization
with intensities. We use the latter as input to CNNs. 101

7.4 Performance of retrieval-based methods. Left: Image retrieval
results. Right: LiDAR retrieval results. 104

xvi

7.5 Qualitative results under exhaustive search. Left: Query. Mid-
dle: Image retrieval method. Right: LiDAR retrieval methods. The
insets display the error between the retrieved result and A digital copy
is recommended, and zooming in is encouraged. 105

7.6 Examples of analysis enabled by the Pit30M metadata. Left:
GPS error correlates with both image and LiDAR localization errors.
Middle: Image localization error vs. sun angle in the horizon (altitude
angle). We observe a smooth error increase as the sun approaches the
horizon. Right: We plot LiDAR queries with more than 1 meter of
error (failure cases) against LiDAR occlusion. We observe a sharp spike
in error when between 15 and 20% of points correspond to dynamic
objects. 106

7.7 Pairwise correlations between metadata in Pit30M and er-
ror of different methods. “Oracle error” stands for a hypotheti-
cal method that can pick the best of either image or LiDAR predic-
tion for each query. 106

7.8 Results with snow. The second and the third examples show NetVLAD
and DenseVLAD struggling with cross-seasonal matches. 107

7.9 Results with low sun angle. The second example shows a success-
ful ResNet match, despite the low sun clearly visible in the frame. 107

7.10 Results with rain. In the second and third examples, we see that
the heavy rain in the query affects the matching quality in the im-
age networks. 108

7.11 Results with occlusion. The first example demonstrates the dif-
ficulty in precise image retrieval with few landmarks in the image. The
second example shows retrieval failures across the image and LiDAR
networks, likely caused by the atypical location and heavy vegetation. 108

7.12 Results with multiple challenging modalities. The first exam-
ple shows a low-light query with snow covering the ground, while the
last example shows both rain and sunshine, which NetVLAD and Den-
seVLAD have trouble handling. 108

7.13 Failure cases. The second and third examples cause failures in both
LiDAR and image retrieval, presumably due to the lack of distinctive
landmarks in the sensor readings. 109

1

1
Introduction

The field of robotics has been undergoing rapid evolution over the
last half-century, and the rate of change is only accelerating due in no
small part to the massive advances in computer vision we have seen
over the last decade.

Powered primarily by explosive progress in machine learning (ML),
the rapid advancement of computer vision has brought about sizeable
leaps in performance on tasks ranging from image understanding and
3D reconstruction to object detection and motion forecasting. Many of
these advances apply to robotics.

Nevertheless, going from a clearly defined computer vision task
to a real-world application is non-trivial. How do we transform self-
contained tasks like image classification into useful applications? How
can semantic segmentation help people with impaired vision? How can
we build a better indoor navigation experience using visual odometry?
These open questions fall outside the scope of typical computer vision
literature.

Robotics is even more challenging because robots typically need
to interact with the world physically. In this sense, we can differenti-
ate robotics from other applications of computer vision and machine
learning by speaking of embodiment. Robotic intelligence is embodied:
It interacts with a physical reality directly, while a computer vision
service running in the cloud does not. Autonomous mobile robots like
drones or self-driving cars are a particular case which is yet more dif-
ficult, as such robots require added layers of robustness and safety.
Moravec’s Paradox1 comes into play in full force in these applications 1 Named after CMU’s Prof. Hans

Moravec, who first discussed it in
his 1988 book “Mind Children,” the
Paradox states that there is a strong
trend for machines to be able to
achieve superhuman performance on
tasks average humans perceive as
difficult (e.g., chess) while struggling
with tasks humans perceive as trivial,
such as object manipulation and
bipedal locomotion (Moravec 1988,
9–11).

which need to safely and reliably perform a wide range of tasks which
are often trivial to humans but challenging for software: understand
their environment, localize within it, plan collision-free trajectories,
and execute them successfully in the presence of uncertainty, noise,
and modeling errors—all in real-time.

There is tremendous potential in modern machine learning, and its
effectiveness is evident in a wide range of applications, from speech

learning rich representations for robot state estimation 2

recognition (Radford et al. 2023) to playing sophisticated games in
partially observable environments (Berner et al. 2019). However,
applying it to real-world, open-domain tasks like autonomous robotics
requires us to frequently shift our focus to the system rather than to
the task level and understand how all algorithmic components interact
with each other and how this relates to the end goal of the system in
question.

1.1 Current Challenges

In spite of recent advances in machine learning (specifically deep learn-
ing), progress in areas like natural language processing has been faster
than in autonomous robotics, despite the fact that both fields are
equally amenable to improvement through learning.

Robots2 need the ability to operate continuously in unstructured 2 Throughout this thesis, whenever we
say robot we mean autonomous mobile
robot, which means we avoid limiting
ourselves to teleoperated robots or
static robots such as manipulator
arms.

environments, which, even in the simplest cases, requires the ability
to solve many different 3D reasoning problems at once: navigation,
localization, perception, and planning (Shenlong Wang 2021). The
robot needs to deal with uncertainty and handle failures of individual
components gracefully through introspection and redundancy.

Additionally, the task of autonomous driving comes with its own
set of challenges in addition to typical robotics ones. As autonomous
vehicles need to transport humans at high speed through diverse and
unstructured environments, resilience and safety become major con-
cerns.

Embodied applications of computer vision, such as autonomous
driving, stand to bring massive economic and quality-of-life improve-
ments to the world. Therefore, it is essential to understand and over-
come the challenges that prevent the adoption of such transformative
technologies. We can group these challenges into several high-level
categories.

• High Performance. We naturally want systems that excel at
their tasks. This means we need the ability to set goals, define
metrics which measure how close we are to a goal, and iteratively
develop a robotic system to achieve the performance goal.

• Scalability & Reduced Costs. We want to achieve our goals at
a large scale, for many robots in many environments, while control-
ling costs. While computational efficiency is an important part of
scalability, it is not the only one. Auxiliary data necessary during
operations, such as maps, should be represented in formats that
lend themselves well to incremental updates and compression, and
the pipelines used to train the ML models should be cost-effective
and easy to maintain.

learning rich representations for robot state estimation 3

• Interpretability. Considering the safety requirements of real-
world robotics, their actions need to be interpretable to human
auditors, both those working on the systems themselves as well as
those working in regulatory, insurance, or law enforcement roles.
Interpretable methods can help build public trust while also provid-
ing insights that can lead to improved performance (Marcu et al.
2023).

• System resilience. Fallbacks are needed to recover from failures.
The system must identify failure conditions, such as a nonrespon-
sive component, a sensor issue, or invalid model outputs, and react
accordingly, such as by deploying a fallback option or, if necessary,
triggering a safe shutdown maneuver. Therefore, it is vital to incor-
porate redundancy and self-healing into the components that make
up a safety-critical system3. 3 For the scope of this thesis, we

limit our attention to failures which
manifest themselves as incorrect
localization poses, and leave the study
of resilience to complete localizer
failures (e.g., system crashes) or to
completely new operational domains
as future work. Please refer to papers
like (Reinke et al. 2022; Ebadi et
al. 2023) for broader discussions on
topics like loose vs. tight coupling,
dealing with dust accumulation
around sensors, and CPU scheduling
of mission-critical tasks.

• Large-Scale Analysis. In order to demonstrate safety, au-
tonomous systems need to be analyzed and validated under ex-
tremely large varieties of conditions that cover the long tail of possi-
ble scenarios.

At the heart of robotic systems lies the task of state estimation,
namely understanding where a robot and its actuators are positioned
within the operation environment. As we will discuss at length in
Chapter 2.3, this task is critical for most downstream components: 3D
detection, motion forecasting, routing, and motion planning, which all
require some form of map data in order to accomplish their task. For
the scope of this thesis, we focus on autonomous driving, where there
are no dedicated actuators like arms or manipulators, so the task of
state estimation is reduced to localization4. As we will elaborate in 4 State estimation for localization

does not imply the state only tracks
the pose and its dynamics. Typical
robot state estimators also keep
track of additional quantities, such as
the biases of an IMU (Mourikis and
Roumeliotis 2007).

Chapter 2, most autonomous driving systems rely on prior maps, and
knowing their position within these maps is critical for their operation.
Because maps can be used in many downstream tasks, localization
errors can affect the system in a wide range of ways. This makes lo-
calization an interesting problem to study not just by itself but also as
part of a broader system.

Accurately localizing observations within a scene has numerous ap-
plications beyond the autonomy software of an SDV. Localization is a
requirement in areas as diverse as 3D reconstruction (J. Wang et al.
2022), digital twin creation (Turki et al. 2023), and offline labeling
(A. J. Yang et al. 2023; Fan et al. 2023). As elaborated in Chapter 8,
simulation is the key to solving many of the problems currently lim-
iting the robustness of robotic systems. It is vital for simulations to
use realistic environments that reflect the real ones where the robot is
expected to operate. In order to reconstruct such environments from
existing observations, it is necessary to aggregate all observations into

learning rich representations for robot state estimation 4

a common reference frame, with localization playing an important role
in this process.

The goal of this thesis is to propose several approaches toward
performant, scalable, interpretable, and resilient robot state estimation
while also studying the role of state estimation within the broader
robotic system and how learning-based approaches for localization
scale as a function of dataset size.

1.2 Key Contributions

This thesis aims to tackle the challenges above within the scope of
self-driving vehicles, with a focus on localization. We show that high
performance can be achieved with deep LiDAR5 matching in online 5 Light Detection and Ranging
localization, and with retrieval in global localization. Scalability can
be achieved in a wide range of ways: lightweight semantic maps, a
database of low-dimensional vectors, or domain-specific compression.
The proposed online localizers operate in a low-dimensional space
using histogram filtering, which facilitates interpretability.

We also show that LiDAR localization can be integrated as a per-
ception network sub-module, facilitating resilience without requiring
a large computational budget. Last but not least, we propose a new
dataset called Pit30M to facilitate large-scale analysis of localization
techniques. The subsequent chapters are organized as follows.

Chapter 2 provides the background knowledge required for subse-
quent parts of the thesis, covering notation, a brief primer on recursive
Bayesian estimation, and a survey of related work. The related work
is grouped in this chapter as the following chapters have significant
overlap because they all deal with localization.

Chapter 3 describes a localization method based on lightweight
HD6 maps which leverages powerful deep learning observation models 6 High Definition
based on camera and LiDAR data, but which is not trained end-to-
end. By using lightweight maps, this method scales well to highway-
size environments. Thanks to its low-dimensional histogram filter
formulation, the method is also interpretable.

Chapter 4 builds upon the previous chapter by developing a deep
representation for LiDAR-based localization, which is trained end-to-
end for the task of localization, and demonstrates improved perfor-
mance. As in the previous chapter, this representation is integrated
into a recursive Bayesian filtering framework. By leveraging 3-DoF
cross-correlation, which is end-to-end differentiable, to perform match-
ing, this approach allows the LiDAR representations to be optimized
directly for the task of localization, improving performance and effi-
ciency, and maintaining the interpretability of the previous chapter.

While using learned representations can substantially improve the

learning rich representations for robot state estimation 5

robustness of state estimation, LiDAR matching still requires dense
map imagery to function. This means map storage will take up large
amounts of space, limiting scalability. Chapter 5 addresses this by
extending LiDAR-based localization to use a compression-aware map
representation, which can outperform general-purpose lossy compres-
sion by an order of magnitude while maintaining similar end-task
performance. We achieve this by optimizing the compressibility of the
map representation, in addition to the task performance.

Chapter 6 moves beyond the task of localization and investi-
gates its role within a full robotics system. We analyze the impact
of localization errors on tasks such as motion forecasting and motion
planning, and formulate a multi-task solution which allows modules
downstream of localization to recover from pose errors. The result-
ing system maintains high-performance localization and perception
while also ensuring that perception is resilient to potential localization
errors.

Chapter 7 discusses an open, petabyte-scale dataset and bench-
mark for localization meant to bring the task of large-scale state esti-
mation into the 2020s, while also enabling countless opportunities for
generative modeling and unsupervised learning. We study different ap-
proaches to global localization and show that a simple retrieval-based
localizer is highly performant and scales to city-scale environments
thanks to its ability to leverage a low-dimensional database of geo-
tagged images as a map. We leverage Pit30M to study the behavior of
this global localizer at an unprecedented scale.

This chapter also discusses some of the practical considerations of
developing and releasing a dataset of this scale, such as handling the
anonymization of sensitive information, creating training, validation,
and test splits, and designing a cloud-friendly software development
kit.

Finally, Chapter 8 concludes the thesis by summarizing its key
insights and discussing limitations and future topics. We summarize
which challenges are primarily tackled by which chapter in Tab. 1.1.

Contribution Scope. Most of the contributions in this thesis are
studied through the lens of autonomous driving, e.g., assuming large
amounts of onboard compute resources for inference and the presence
of a LiDAR. However, many insights can be transferred to broader
domains. LiDAR matching localization can also be applied to camera-
based systems by leveraging known sensor extrinsics (Philion and
Fidler 2020) or learned transformations (W. Yang et al. 2021; Z. Li et
al. 2022) to map camera images to bird’s-eye view. The same applies
to the map compression line of work presented in Chapter 5, which
is agnostic to the data source used to build a map. Furthermore, the
concept of task-specific compression extends beyond localization and

learning rich representations for robot state estimation 6

High Perf. Scalable Interpretable Resilient Large-Scale
Analysis

Lightweight Localization
(Chapter 3) ✓ ✓

Deep LiDAR Matching
(Chapter 4) ✓ ✓

Learning to Compress
(Chapter 5) ✓ ✓ ✓

Localization & Perception
(Chapter 6) ✓ ✓ ✓

The Pit30M Benchmark
(Chapter 7) ✓ ✓ ✓

Table 1.1: Challenges tackled by
each chapter. Each chapter tackles
one or more of the key challenges in
autonomous mobile robots, which are
highlighted in the intro.

into tasks like memory-augmented perception (You, Luo, Chen, et
al. 2022), language modeling (J. Mu, Li, and Goodman 2024), and
retrieval-augmented generation (RAG).

The system-level analysis in Chapter 6 is likewise sensor-agnostic
and can apply to other approaches, such as pure end-to-end driving
using HD maps (Sadat et al. 2020). Multi-task learning is not limited
to correcting localization errors and can also tackle, for example, cal-
ibration errors that may arise during the operation of a multi-sensor
system (Kanai et al. 2023).

The Pit30M benchmark is itself multi-sensor, and the original pa-
per already focused primarily on camera data, making its insights
amenable to drones and mobile phones, in addition to ground robots.
The dataset also includes camera, GPS, wheel speed, and IMU7 data. 7 inertial measurement unit
Its long sequences can also be applied to study tasks like unsupervised
learning and generalizable novel view synthesis (NVS).

1.3 Relation to Published Work

This thesis encompasses several research papers on which I worked
during my time at the University of Toronto. All of them have been
published in top-tier international robotics and computer vision
venues. The ∗ denotes equal contribution.

• Chapter 3 is based on: Wei-Chiu Ma∗, Ignacio Tartavull∗, Ioan
Andrei Bârsan∗, Shenlong Wang∗, Min Bai, Gellért Máttyus,
Namdar Homayounfar, Shrinidhi Kowshika Lakshmikanth, Andrei
Pokrovsky, and Raquel Urtasun. “Exploiting sparse semantic HD
maps for self-driving vehicle localization.” International Conference
on Intelligent Robots and Systems (IROS). 2019.

learning rich representations for robot state estimation 7

• Chapter 4 is based on: Ioan Andrei Bârsan∗, Shenlong Wang∗,
Andrei Pokrovsky, and Raquel Urtasun. “Learning to Localize
Using a LiDAR Intensity Map.” Conference on Robot Learning
(CoRL). 2018.

• Chapter 5 is based on: Xinkai Wei∗, Ioan Andrei Bârsan∗, Shen-
long Wang∗, Julieta Martinez, and Raquel Urtasun. “Learning to
localize through compressed binary maps.” International Conference
on Computer Vision and Pattern Recognition (CVPR). 2019.

• Chapter 6 is based on: John Phillips∗, Julieta Martinez∗, Ioan
Andrei Bârsan∗, Sergio Casas, Abbas Sadat, and Raquel Urtasun.
“Deep Multi-Task Learning for Joint Localization, Perception, and
Prediction” International Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

• Chapter 7 is based on: Julieta Martinez, Sasha Doubov, Jack Fan,
Ioan Andrei Bârsan, Shenlong Wang, Gellért Máttyus, and
Raquel Urtasun, “Pit30m: A benchmark for global localization
in the age of self-driving cars”, International Conference on Robots
and Systems (IROS), 2020. (Best Application Paper Finalist)

– This chapter also includes new material detailing the process and
challenges of releasing a helpful, easy-to-use large-scale dataset:
finding a hosting provider to sponsor the dataset, anonymization,
and SDK design.

1.4 Other Research During My PhD Study

Throughout my PhD, I have had the privilege of working with many
talented collaborators on a broad range of topics whose scope lies
beyond this thesis. This section gives a brief overview of this work.

1.4.1 Simultaneous Localization and Mapping

It is often infeasible for all of a robot’s sensors to record at the same
cadence. In some cases, high sampling rates are a requirement for
nominal operation (e.g., IMU), while other sensors, such as low-end
GNSS receivers, may only provide measurements at 1Hz. For many
sensors, such as most LiDARs and cameras, any notion of an instan-
taneous or near-instantaneous measurement ceases to exist due to
the rolling shutter. It is, therefore, vital for robots to employ de-
signs which are aware of asynchronous sensors. In AMV-SLAM (A.
J. Yang et al. 2021), we studied asynchronous sensors from the per-
spective of multi-camera simultaneous localization and mapping.
By modeling the robot trajectory using B-splines, the system was

learning rich representations for robot state estimation 8

able to incorporate asynchronous observations coming from multi-
ple cameras in all stages of the SLAM pipeline: tracking, mapping,
and place recognition. Additionally, given the lack of publicly avail-
able asynchronous multi-camera datasets at the time of publication,
we curated our own as a subset of the Pit30M dataset presented in
Chapter 7. The dataset is available for download on its project page:
https://www.cs.toronto.edu/~ajyang/amv-slam/.

1.4.2 Sensor Simulation and Domain Gap Analysis

While the construction of simulated worlds is one of the many appli-
cations of mapping and localization, discussing specific approaches for
simulation is beyond the scope of this thesis. A simulator, just like a
video game, consists of multiple components, including asset creation,
sensor simulation (“graphics”), behavior simulation (“NPCs”), and
the simulation infrastructure (“the engine”). In CADSim (J. Wang
et al. 2022), we focused on automated asset creation, and proposed
an approach for part-aware object reconstruction from in-the-wild
data. By leveraging mesh deformation, the method was able to pro-
duce realistic assets which could be readily imported and rendered into
any rasterization-based graphics engine, and used to synthesize both
camera and LiDAR sensor data.

More recently, in LidarDG (Manivasagam et al. 2023), we explored
the topic of LiDAR simulation realism in more detail and proposed a
framework for ablating the impact of asset quality and various sensor
effects such as asset quality, rolling shutter, unreturned rays, and
multi-echo returns, on realism.

1.5 About This Thesis

I typeset this thesis using a template based on Edward R. Tufte’s
books. Professor Tufte is well-known for his pioneering research and
writing on statistics and data visualization. He has written several
books on the intersection of these two fields, such as The Visual Dis-
play of Quantitative Information (Tufte 2001). Prof. Tufte advocates
for layouts that facilitate focusing on the main flow of ideas in the
main text, making ample use of side notes for additional but non-
critical details.

I found the format makes reading long technical texts easier and
more pleasant, especially in digital formats, so I used it in my thesis
by leveraging the MIT-licensed tufte-markdown project available on
GitHub at github.com/duzyn/tufte-markdown.

https://www.cs.toronto.edu/~ajyang/amv-slam/
https://github.com/duzyn/tufte-markdown/

9

2
Background and Related Work

This chapter presents the key mathematical building blocks required
to understand the thesis, together with a survey of related work in
robot localization and related tasks. The background assumes famil-
iarity with basic probability and graphical models used in robotics.
For readers who are not yet familiar with these concepts or those in-
terested in a refresher, textbooks such as (Thrun, Burgard, and Fox
2005), (Siegwart, Nourbakhsh, and Scaramuzza 2011), and (Barfoot
2024) provide excellent introductions to key topics ranging from robot
and sensor basics, all the way to sophisticated mathematical tech-
niques for localization, 3D registration, SLAM, and more.

The chapter is structured as follows. We begin by introducing the
fundamental notation and key mathematical concepts used throughout
the thesis. We also introduce the key components that make up the
majority of autonomous driving systems and the fundamentals of Li-
DAR, the sensor used in most applications from this thesis. Then, in
Chapter 2.4, we discuss the theoretical foundations of online histogram
filtering and their advantages in ground robot localization. We apply
this well-established framework multiple times throughout this thesis,
to the task of localizing in lightweight HD maps (Chapter 3), learning
representations for LiDAR localization (Chapter 4), learning compress-
ible maps (Chapter 5), and localizing as part of a multi-task system
(Chapter 6).

Afterward, Chapter 2.5 frames the thesis by providing an extensive
overview of the prior work in robot localization, as well as briefly
covering related research in SLAM, mapping, compression, and multi-
task learning.

learning rich representations for robot state estimation 10

2.1 3D Geometry Notation

We represent 3D coordinates as 3D column vectors, such as:

x =

x

y

z

 ∈ R3, (2.1)

where x, y, z ∈ R.
We can express a 3D rotation as an orthogonal matrix R ∈ R3×3 of

determinant 1, and a 3D translation as a vector t ∈ R3. They can be
assembled together to form a rigid transformation T ∈ R4×4 as

T =

(
R x
0T 1

)
∈ R4×4. (2.2)

This transform has six degrees of freedom. We can also use letters,
typically capital letters, to denote sequences of points. For example,
X ∈ R4×N will denote N 4D vectors, stacked horizontally. This is
convenient when reasoning about multiple points at once for a 3D map
or a LiDAR sweep.

While structurally, the R and T are real 3 × 3 and 4 × 4 matrices,
their unique constraints (orthogonality and determinant = 1 for R,
and the added structural constraints for T) limit their degrees of free-
dom (DoF), meaning the matrices are not arbitrary elements of these
matrix groups. Instead, these quantities represent members of the
Special Orthogonal group of R3×3, and the Special Euclidean group of
R4×4. These groups are Lie groups, which impacts how their elements
are interpreted, e.g., during interpolation and optimization (Gallier
and Quaintance 2020).

The rigid transformation can be applied to a point x by rotating,
then translating it, as follows:

x′ = Rx + t. (2.3)

However, it is often more convenient to apply T directly as a linear
operator. For this, we need the notion of homogeneous coordinates.

Homogeneous coordinates. It is beneficial to define an extended
notation for 3D vectors such that rigid transformations like those in
Eq. 2.2 can be applied directly as linear operators. We denote

x̂ =

x

y

z

1

 , (2.4)

as the homogeneous version of x. Homogeneous points have the prop-
erty that all points of format x̂ = (kx, ky, kz, k) are equivalent for any

learning rich representations for robot state estimation 11

k ̸= 01. In some equations, we may abuse the notations and simply use 1 In practice, when k = 0 the point is
still valid, but it is a point at infinity.
This has important ramifications in
projective geometry, but a detailed
treatment of these geometric entities
is beyond the scope of this chapter.
Please refer to (Hartley and Zisser-
man 2003) for further details.

x itself to denote a point with 2D or 3D homogeneous coordinates.
We can also spell out the source and destination coordinate frames

for a 3D transformation. This can also be done for quantities such as
point 3D coordinates and vector directions in order to improve clarity.
Specifically, we can use

Xw = wTrXr (2.5)

to denote a 3D operation T which transforms points Xr expressed in
some robot reference frame r into a world reference frame denoted w.

2.2 LiDAR Sensors

In addition to cameras, many ground robots and most autonomous
vehicles leverage Light Detection And Ranging (LiDAR) sensors. Li-
DAR sensor typically leverage time-of-flight measurements for infrared
laser pulses to perceive the 3D structure of an environment. For the
scope of applications in this thesis, we focus on spinning 3D LiDAR
sensors, such as the Velodyne HDL-64E.

Spinning LiDAR sensors consist of a column of lasers, 64 in the
case of the HDL-64E, which spins at a pre-defined frequency, taking
readings of the surrounding environment. At precise azimuth angles
along its 360° spin, each laser from the spinning LiDAR’s laser column
emits a laser pulse. The reflections of these pulses are measured by a
series of photodiodes typically rigidly attached close to the emitters.
By measuring the time-of-flight for the pulse, each photodiode can
infer the range of the object that produced the reflection using the
speed of light. The range information, coupled with the known beam
pitch and azimuth, can be used to infer the precise 3D coordinates
of the perceived object in the sensor frame. We depict a simplified
diagram of a spinning LiDAR in Fig. 2.1.

In addition to the range (and, by extension, cartesian coordinates)
of points, laser scanners can also return an intensity measurement.
While the definition of “intensity’’ can vary across the literature and
manufacturers (Kashani et al. 2015), it can generally be interpreted
as a measure of the reflectivity of the object hit by the laser. Thus,
darker objects will yield low-intensity returns, while lighter and highly
reflective ones will return very high intensities. Nevertheless, many
factors can influence the actual reported intensity of a LiDAR return,
including incidence angle and environmental factors such as weather
(Kashani et al. 2015; Manivasagam et al. 2023). This can pose a
problem for robotic systems that rely on LiDAR intensity measure-
ments for tasks such as localization, especially when different LiDAR
units, or even different models are used in mapping versus localiza-
tion. Chapter 4 explores this topic in detail, proposing an efficient and

learning rich representations for robot state estimation 12

effective learning-based method to overcome it.
Unlike cameras, LiDARs are a form of active sensor, which makes

them mostly invariant to ambient lighting. They also perceive 3D
structure directly, bypassing the ambiguities of doing so with stereo or
monocular cameras.

Figure 2.1: 3D LiDAR Operating
Principle. Illustration from (Rosique
et al. 2019).

While their cost and complexity are higher than those of typical
cameras, the industry has made great strides in the last five years to
address them, often in the form of “solid-state’’ LiDARs, which can
scan an environment without physically moving the entire laser and
lens assembly (Luminar Technologies 2024).

2.3 Self-Driving Vehicles

Self-Driving Vehicles (SDVs) represent a particularly challenging ap-
plication of mobile ground robots. With applications in taxi services
and freight transportation, SDVs have the potential to bring about
substantial economic benefits and improve overall road safety. Never-
theless, the need to operate safely and autonomously alongside human
drivers across a wide range of high-speed environments brings with it
a host of challenges.

In this thesis, we focus on autonomous vehicles designed to share
the road with human drivers and forego discussing industrial appli-
cations like warehouse automation, mining, and agriculture. In this
section, we will give a brief overview of the main tasks an average self-
driving vehicle must perform for safe, efficient, and effective operation.
We depict a high-level diagram of the structure of such a system in
Fig. 2.2, noting that in many approaches, some or all of the depicted
modules may be fused—e.g., perception and prediction may be for-
mulated as a unified task, prediction and planning may be unified
in a reactive framework, or a single neural network may replace all
components between the sensors and the controls.

System Inputs. The inputs to a typical autonomous driving sys-
tem considered in this thesis are (i) its high-level mission, (ii) a map,

learning rich representations for robot state estimation 13

and (iii) the sensor data. The high-level mission specifies the task that
the robot is assigned, such as the pick-up and drop-off locations for a
passenger or cargo, in the case of robotaxis or shipping, respectively.

The map may be a plain navigation map, like those used by hu-
mans in GPS navigation, or an HD map. An HD map may encompass
multiple layers. Layers may contain sparse information, such as the
road centerlines, lane centerlines, traffic signs, and their topology, or
they may contain dense information, such as satellite imagery, ground
LiDAR intensity imagery, or a digital elevation model. Recent work
has also explored learning what to store in the map in order to maxi-
mize performance on tasks such as object detection (You, Luo, Chen,
et al. 2022), though such representations are still limited to research
projects at the time of writing.

Sensor inputs can be very diverse. In the applications covered by
this thesis, we consider multiple cameras, a single spinning LiDAR, an
IMU, GNSS, and wheel speed sensor data, though many mobile robots
also utilize ultrasonic sensors, RADAR, event cameras, or thermal
cameras.

In some cases, system inputs may also come from a human. While
it is common for a human safety driver to be present behind the wheel
in earlier stages of SDV development, remote monitoring is common
for mature autonomy systems, typically for safety reasons. Remote
assistance inputs typically take the form of direct driving actuation
or waypoints (Kettwich, Schrank, and Oehl 2021; Waymo LLC 2024,
C.VI.A), though in recent research, natural language has also demon-
strated potential in helping autonomous vehicles navigate challenging
areas (Mao et al. 2023).

eHMI

Communicate actions:
Speakers, external displays,
projectors, etc.

Control

Convert plans into drive-by-
wire actuation commands.

Plan

Select the trajectory which
balances safety, navigation,
and comfort goals.

Predict

Forecast all possible ways in
which actors, seen and
unseen, could move.

Perceive

Understand scene layout and
the positions of all actors.

Localize

Estimate the vehicle state,
including its velocity and
position relative to a map.

Map

Encode rich prior knowledge of
the world ahead of time.

Sense

Internal and
external
sensors.

End-to-End DrivingJoint Perception and Prediction from
Sensor Data

Figure 2.2: Data flow diagram
in typical self-driving software
systems. This figure depicts an
approximation of the components
which encompass an SDV. eHMI
stands for external human-machine
interface, and encompasses all SDV-
specific methods that a robotic driver
can use to communicate with other
traffic participants, like specific sound
alerts, custom lights, displays, etc.

System Outputs. The key outputs of an SDV typically include
steering, throttle, and braking commands generated by a controller,
which are sent through a drive-by-wire interface to operate the vehicle

learning rich representations for robot state estimation 14

(Ort et al. 2019). A high-reliability computer may further validate
these commands before they are actuated to ensure they are within a
safe pre-validated range.

In multi-agent settings (V2X), an SDV may also send intermedi-
ate outputs, such as object detections or even feature maps, to other
robots to improve the effective field of view of nearby agents (T.-H.
Wang et al. 2020).

Another interesting family of outputs relates to communication
with non-autonomous traffic participants. While humans often use
hand gestures, eye contact, honking, or even voice to communicate
with other traffic participants, autonomous vehicles cannot use most
of these channels. Nevertheless, these channels are important in navi-
gating complex scenarios, as well as in improving safety and building
public trust. For example, while it can be easy for a pedestrian to tell
that a human driver has seen them by making eye contact, this is not
possible with autonomous vehicles. A wide body of research at the
intersection of robotics and human-computer interaction (HCI) aims
to study these kinds of challenges through the development of various
external human-machine interfaces (eHMIs). Proposed solutions range
from light strips and speakers (Carmona et al. 2021) to installing an-
imatronic eyes on vehicles which are actuated to make eye contact
with nearby pedestrians (Chang et al. 2022) and even laser projec-
tors which illuminate the planned trajectory of a vehicle (Daimler AG
2015, refer to the Photos section).

System Modules. While it is possible to develop camera-only
autonomy systems, the inability of cameras to sense 3D structure
increases complexity and computational costs as these aspects need
to be modeled in software, either implicitly or explicitly. Thus, we
describe autonomy systems which can leverage LiDAR sensors to
directly infer the environment structure. Nevertheless, most of this
discussion also applies to camera-only SDVs.

We discuss the system components in a modular way for ease of
understanding, but this does not mean each such component operates
standalone. For example, it is common to unify perception and predic-
tion into a single task (W. Luo, Yang, and Urtasun 2018; Y. Hu et al.
2023). This can also be extended to motion planning, in which case we
speak of reactive planning (Rhinehart et al. 2021).

• Mission Planning dictates the overarching goal of a mobile robot
operating in an environment. For example, for warehouse automa-
tion robots, this may be the module which dispatches a robot to
move a specific pallet, while for SDVs, this typically takes the form
of high-level route planning from point A to point B based on cus-
tomer input.

learning rich representations for robot state estimation 15

• Sensor Preprocessing involves decoding and aggregating sensor
data into a format that an autonomy system can handle. In most
robotic systems, this begins with decoding raw sensor data from the
wire format and applying fundamental transformations such as im-
age debayering and tone mapping, or LiDAR motion compensation.

• Localization computes vehicle poses with respect to some refer-
ence frame. As we will elaborate later in this chapter, localization
can be performed using almost any sensor available on an SDV
platform: IMUs, wheel speed sensors, LiDARs, cameras, RADARs,
GNSS, etc. Leveraging a combination of sensors, such as LiDAR
and IMU, is common for ensuring robust results. In practice, local-
izers typically compute two kinds of poses.

1. A local (“continuous”) pose can be used for reasoning about
things in the immediate vicinity of the robot. This is used by
components that require smoothness and local consistency, like
the controller or LiDAR motion compensation. While the local
pose may drift, it is updated at a high frequency and is guaran-
teed to be smooth.

2. A global (“map-relative”) pose is used for reasoning about things
on the map. In contrast to the local pose, the global pose should
be allowed to jump around in small amounts as new evidence is
perceived without causing issues with autonomy. While contin-
uous poses are typically updated very frequently, often in sync
with an IMU, global pose updates often rely on heavier compu-
tations like point cloud registration and thus run at 10 Hz or
slower. The focus of this thesis is on map-relative localization.

• Perception reasons about the location and type of the various
objects in the scene surrounding the SDV. This encompasses both
(potentially) dynamic objects like cars and pedestrians, as well as
static objects like lane lines, traffic signs, etc. Perception can run
with or without map input. If used, maps may be sparse structured
maps, as those described in Chapter 3, or unstructured fully learned
“hindsight features” as proposed by (You, Luo, Chen, et al. 2022).
Perception can leverage a wide range of sensors such as cameras,
LiDARs, RADAR, ultrasonics, etc. Multi-modal inputs can be
beneficial because of the different strengths and limitations of dif-
ferent sensors. For example, RADAR may be noisy on its own but
coupled with LiDAR it can improve robustness in adverse weather
conditions (B. Yang et al. 2020).

• Tracking involves inferring correspondences between objects de-
tected in the individual frames of a data stream, such as a video.
In other words, tracking organizes temporally disjoint perception
outputs into consistent tracks (Frossard and Urtasun 2018). This

learning rich representations for robot state estimation 16

can improve the quality of motion forecasting (W. Luo, Yang, and
Urtasun 2018) and help reason about long occlusions (Luiten et al.
2021).

• Prediction (or motion forecasting) is tasked with understanding
where the actors in the scene are likely to go in the near future.
Prediction is challenging due to its inherent ambiguity. This am-
biguity occurs at two levels: first, outputs need to be multi-modal
and probabilistic, and their probabilities need to be well-calibrated.
Second, at training time, only a single future unfolds from any
given moment in the real data, limiting the amount of supervision,
even with perfect labels. Prediction can be a standalone module,
or it can be coupled with perception, planning, or both (W. Luo,
Yang, and Urtasun 2018; Zeng et al. 2019). Its outputs may take
a parametric form (Casas, Gulino, Suo, Luo, et al. 2020), in the
shape of a sequence of waypoints for each actor at pre-defined times
in the future, or a nonparametric one (A. Hu et al. 2021; Agro
et al. 2023, 2024), in which case the model outputs probabilistic
occupancy maps at different times in the future. The occupancy
maps may be represented explicitly (A. Hu et al. 2021) or implicitly
(Agro et al. 2023, 2024).

• Motion Planning is tasked with leveraging inferred informa-
tion about current and future actor states and computing a safe,
compliant, physically realistic, and comfortable trajectory for the
vehicle which makes progress towards its high-level goal (Sadat et
al. 2019). The planner needs information about the map around
the SDV to ensure its outputs comply with the rules of the road;
the map may be pre-computed (Sadat et al. 2019), or it may be
the output of an online mapping algorithm that runs as part of the
perception stage (Casas, Sadat, and Urtasun 2021).

• The Controller leverages local poses and other ego-state pa-
rameters together with the active motion plan to compute high-
frequency actuation commands for braking, acceleration, and steer-
ing in order to follow the plan (Ort et al. 2019).

2.4 Localizing Ground Robots using Histogram Filtering

As motivated in Chapter 1, this thesis will primarily focus on the
localization task, the cornerstone of all modules discussed above. De-
pending on the prior assumptions, we can divide localization into
global and online localization.

• Global localization aims to position a robot in a map based on
its sensory information without any prior knowledge about where
the robot is. GPS-based methods and place recognition belong to
this family, for example.

learning rich representations for robot state estimation 17

• Online localization positions the robot based on a strong prior
of where it was on a previous time-step: this can enable efficient
centimeter-level localization precision, but relies on having a good
guess of where the robot is located. These methods are often unable
to recover from an incorrect initialization without the help of a
global localizer. Online localization methods include the inertial
part of an RTK2 system, as well as the LiDAR matching methods 2 Real-Time Kinematic
covered in this thesis.

In this thesis, we mainly focus on online localization. In every chap-
ter except Chapter 7, we perform online localization against pre-built
maps. The maps are constructed from multiple passes through the
same area, which allows us to perform additional post-processing
steps, such as dynamic object removal. The accumulation of multi-
ple passes also produces maps that contain denser information than
individual LiDAR sweeps.

The maps may contain different kinds of information, or layers,
such as lane lines, traffic signs (see Chapter 3), orthographic bird’s-eye
view (BEV) images of the ground, or pre-computed neural network
features (see Chapter 4).

Considering our focus on SDVs, which operate in structured human-
built environments, we can restrict the task of computing the robot’s
6-DoF 3D pose to 3-DoF by assuming its height, pitch, and roll can
be inferred from the map itself. We assume that our sensors are cal-
ibrated and neglect the effects of suspension, unbalanced tires, and
vibration, which allows us to simplify inference and efficiently leverage
histogram filtering. This brings benefits in terms of simplicity and ro-
bustness. Since most chapters of this thesis involve performing online
localization within a prior 2D map using LiDAR data in a histogram
filtering framework, this section will give a primer on the mathemati-
cal elements shared among all methods.

The section is structured as follows. We first formulate localization
as a recursive Bayesian estimation problem and discuss each prob-
abilistic term. We then present a real-time inference algorithm and
specify different observation sources which can be integrated, as will
be detailed in upcoming chapters:

• Chapter 3 discusses a localization system which leverages energy
terms for matching against lane lines and traffic signs.

• Deep LiDAR Localization (Chapter 4) uses an energy term that
matches map and online LiDAR images processed using fully convo-
lutional networks.

• The system in Chapter 5 uses the same framework and does not
add new inputs to localization. Instead, it focuses on reducing the
maps’ storage requirements.

learning rich representations for robot state estimation 18

• Finally, Chapter 6 integrates the LiDAR matching observation
model alongside perception into a multi-task framework. As with
the past two chapters, the matching here is likewise performed
against a dense LiDAR intensity map.

2.4.1 Recursive Bayesian Filtering

For the scope of this thesis, we will focus our attention onto a par-
ticular family of graphical models, namely recursive Bayesian filters,
as they have numerous properties that are convenient when modeling
robotic applications.

A histogram filter is an instance of recursive Bayesian inference
which uses a discrete grid to make the inference problem tractable.
While this approach also suffers from the same Curse of Dimension-
ality as Particle Filters, it has the benefit of dense support over the
entire problem domain, eliminating the problem of particle exhaus-
tion and reducing (though not eliminating) the risk of mode collapse
(Thrun, Burgard, and Fox 2005).

2.4.2 Online 3-DoF Localization for Ground Robots

Let us now describe our 3-DoF inference algorithm mathematically
within the well-established framework of recursive Bayesian filtering.
Our 3-DoF pose consists of a 2D translation and a heading angle. We
denote the SDV pose as x = {x, y, θ}, where x, y ∈ R and θ ∈ (−π, π],
and use Bel to denote a probability distribution over the vehicle pose.

At each time step t, the localizer takes as input the previous most
likely estimate of the pose x∗

t−1 and distribution Belt−1(x), the vehicle
dynamics ẋt, the online observation Z, the vehicle dynamics observa-
tion X , and the pre-built map M.

Z may include camera, GPS, or aggregated LiDAR data. Aggre-
gated LiDAR, denoted as I, can be accumulated from the k most
recent LiDAR sweeps using the IMU and wheel odometry. This pro-
duces denser online LiDAR images than just using the most recent
sweep, helping localization. Since k is small, drift is not an issue.

We then formulate localization as a recursive Bayesian inference
problem. We encode the fact that the online observation should be
consistent with the map at the vehicle’s location and that the belief
updates should be consistent with the motion model. Thus,

Belt(x) = η · Pobs(Zt | x;M,w)Belt|t−1(x | Xt) (2.6)

where Pobs represents the current frame observation model, which
measures the probability of a sensor observation model (GPS, Li-
DAR, or cameras) given the map M. The exact sensors depend on
the specific formulation of the observation term, e.g., a pure LiDAR

learning rich representations for robot state estimation 19

matcher would not need cameras. The map M may also be omitted,
for example, in the case of a GPS observation term. The observation
model may include a set of parameters used in interpreting the obser-
vations, which we denote as w. In practice, this term is formulated as
an elementwise product of multiple specific terms, for example, the
multiplication of a GPS energy and a BEV matching model. Bel(xt)

is the posterior distribution of the vehicle pose at time t given all the
sensor observations until step t; η is a normalization factor. We do not
need to calculate it explicitly because we discretize the belief space, so
normalization is trivial.

2.4.3 Energy Terms Used in This Thesis

This section will focus on the specific energy terms used in the localiz-
ers discussed in this thesis.

Vehicle motion model. The vehicle motion model is encoded in
the prediction term of our Bayesian filter, Belt|t−1(x|Xt). It encodes
the fact that the inferred state estimates should be consistent over
time, and consistent with the current vehicle ego-motion Xt, as per-
ceived by its wheel encoders and inertial measurement unit (IMU).
This motion model is encoded as

Belt|t−1(x | Xt) =
∑

xt−1∈Rt−1

P (x | Xt, xt−1)Belt−1(xt−1). (2.7)

In practice, the wheel encoder and IMU information are fed into a
separate Kalman Filter which estimates the ego velocity. This esti-
mate is treated as a velocity observation Xt to our system, following a
loose coupling philosophy.

Specifically, given an observation of the vehicle motion Xt, the
motion model is computed by marginalizing out the previous pose,
where the likelihood is a Gaussian probability model

P (x|Xt, xt−1) ∝ N ((x ⊖ (xt−1 ⊕Xt)) ,Σ) (2.8)

with Σ the covariance matrix. Note that ⊕ and ⊖ are the standard 2D
pose composition and inverse pose composition operators described by
(Kümmerle et al. 2009).

GPS Energy. The GPS term measures the probability of the
current GPS observation for a given vehicle pose x. We approximate
it using a simple 2D Gaussian distribution, whose variance σ2

GPS is
computed empirically:

PGPS(g | x) ∝ exp
(
− (gx − x)2 + (gy − y)2

σ2
GPS

)
. (2.9)

Here, g = [gx, gy]
T are the GPS observations, and x = [x, y]T repre-

sents the 2-DoF vehicle pose, both expressed as easting and northing

learning rich representations for robot state estimation 20

in the Universal Transverse Mercator (UTM) coordinate system3. Our 3 While it is possible to define these
terms in a geodetic reference frame
like WGS 84, the modeling task would
be made more complex due to their
non-Euclidean nature.

models do not make use of the GPS heading estimate.
BEV Matching Model. Given a candidate pose x, a bird’s-eye

view (BEV) matching model of the form PBEV encodes the agree-
ment between a current observation, expressed in BEV, and a BEV
map indexed at the hypothesized 3-DoF pose x. We warp the on-
line observation according to each pose hypothesis and compute the
cross-correlation between the warped online observation and the map.
Formally, this can be written as:

PBEV (Zt | x;w) ∝ s (π (fo(Zt;wo), x) , fm(M;wm)) , (2.10)

where fo and fm are the BEV representations of the online sensor
data and the map, respectively. Zt denotes the current online ob-
servation, and w = (wo,wm) encodes any additional parameters of
the online and map terms4. π represents a 2D rigid warping function 4 For example, if evaluating the term

involves inference in a neural network,
as is the case, e.g., in Chapter 4, wo

and wm would encompass the network
weights.

meant to transform the online BEV observation into the map’s co-
ordinate frame according to the given pose hypothesis x5. Finally, s

5 The warp operation is linear and
can be implemented efficiently by
transforming the coordinates of the
pixels in the target image back into
the original and computing their
values using bilinear interpolation.
This is the resampling principle used
by (Jaderberg et al. 2015), and its
implementation is readily available
in PyTorch. Thanks to the bilinear
interpolation, the entire operation
is differentiable, allowing it to be
integrated into the optimization
process for w.

represents an affinity function, typically a cross-correlation operation.
While the first two terms are either standard components of re-

cursive Bayesian filtering (the motion model), or mathematically
straightforward (the GPS energy), the BEV energy is where most
of the novelty in the next four chapters is concentrated. The bird’s-eye
view observation Zt can encode many types of information. In Chap-
ter 3, it will take the form of a binary map denoting lane lines and
traffic signs, mapped into 2D locations by use of LiDAR data, while
in Chapters 4, 5, and 6, we will discuss BEV observation terms which
directly leverage LiDAR data.

2.4.4 Efficient Inference

The recursive formulation expressed in Eq. (2.6) is generally in-
tractable. In practice, efficient inference requires approximating the
objective. This can typically be achieved by approximating the quanti-
ties with weighted samples, yielding a particle filter, or by discretizing
the state space, which leads to a histogram filter.

The two approaches have different strengths and weaknesses: Parti-
cle filtering tends to have the maximum flexibility as particles can dy-
namically adjust the support of the distribution. On the other hand,
histogram filtering provides dense support throughout the domain.
However, histogram filtering also provides computational advantages
when it comes to evaluating certain observation terms.

Both approaches can be used for local or global localization by
selecting the scale of the support region—modeling the entire state
space (e.g., the whole map) yields global localization, while modeling

learning rich representations for robot state estimation 21

it locally around the current likeliest pose estimate is equivalent to
online localization. Effectively performing global localization at scale is
not the focus of this thesis, and we instead focus on online localization
for most of this thesis. We revisit global localization for our large-scale
dataset analysis in Chapter 7, but we do not leverage any probabilistic
model to filter observations.

The computational advantage of dense histogram filtering becomes
apparent when we consider how BEV observation terms are modeled
in this setting. Evaluating an observation term at a particular candi-
date location is computationally equivalent to a dot product. How-
ever, over a dense (x, y) region, this becomes a convolution6, bringing 6 If we were using particle filtering,

then evaluating each particle would
involve a dot product at a completely
different map location, which prevents
any computation reuse.

numerous computational advantages.
In practice, we always evaluate a dense grid of x, resulting in a 3D

probability volume over (x, y, θ). We factorize the computation of this
probability volume by first enumerating over nθ discrete values of θ,
and computing a convolution over (x, y) for each one. nθ need not be
large in practice, and the convolution at every step can be evaluated
very fast even for large (x, y) search ranges, as we will see next.

Accelerating Correlation Enumerating the full translational
search range with the inner product when evaluating a particular ob-
servation term is equivalent to a correlation filter with a large kernel.
Motivated by the fact that the kernel is very large, we perform this
operation in the spectral domain (i.e., “FFT-conv”), which acceler-
ates it by a factor of 20 over the state-of-the-art GEMM-based spatial
GPU correlation implementations.

This is enabled by the convolution theorem, which states that the
Fourier Transform of two convolved signals is equal to the inverse of
the dot product of the FFTs of the individual signals:

f ∗ g = F−1{F{f} · F{g}}. (2.11)

In our case, f denotes the current BEV observation, while g denotes
the areas of the map within which we are searching for a match. This
area is typically on the order of several tens of meters at most. Since
we deal with discrete tensors, we leverage the Fast Fourier Transform
algorithm.

The run time of a spatial convolution between the two signals is
O(n2), where n is the total number of pixels. Leveraging the convo-
lution theorem empowered by FFT, which is O(n logn) results in an
operation run-time of O(n+n logn), which is dominated by the n logn
term7. 7 In most convolutional neural net-

work architectures, the dimensions of
a convolution filter are small (often
3 × 3 or 5 × 5), which means that
the overhead of FFT is not worth it.
In our case, since our “filter” is the
online BEV observation, hundreds of
pixels in each dimension, the speedup
is substantial, making the run-time
penalty of the FFT worthwhile.

While extending the rotational component of the matching to the
yaw dimension is not straightforward, it is typically acceptable to
simply enumerate a few yaw offset candidates and perform the above
procedure for each. By doing this, we end up with an x, y, nθ distribu-

learning rich representations for robot state estimation 22

tion over poses.8 8 Matching over the rotational di-
mension can be performed using a
Fourier-Mellin transform (X. Guo et
al. 2005). However, this approach is
less practical for online localization,
where we are only interested in small
relative offsets—in this case, simply
enumerating a few offsets and per-
forming FFT-convs for each of them is
faster.

Point Estimation. At any time during the operation of state
estimation, it may be necessary to extract a point estimate of the
pose. For example, such an estimate is necessary for fusing map and
online LiDAR information to pass them as input to a neural network
which performs map-aided object detection. Unlike the MAP inference
which simply takes the configuration that maximizes the posterior
belief, we adopt a center-of-mass-based soft-argmax (Levinson and
Thrun 2010) to better incorporate the uncertainty of our model and
encourage smoothness in our localization. We thus define

x∗
t =

∑
x Belt(x)α · x∑

x Belt(x)α
, (2.12)

where α ≥ 1 is a temperature hyperparameter9. This gives us an 9 Intuitively, for α = 1 we recover a
weighted average of the values in our
grid, while for α → ∞, we return the
mode of the posterior.

estimate that takes the uncertainty of the prediction into account.

2.5 Related Work

Robot state estimation, especially localization, is one of the most
widely studied areas of robotics. With applications ranging from nav-
igation, shipping, and construction to autonomous robots and virtual
reality, this task has been approached with nearly every sensing tech-
nique developed by humans.

While the task of localization has a history dating back to the very
start of modern civilization, this section will mostly cover localization
as it relates to modern robotic systems: starting from the mid-20th-
century tower-based predecessors of GPS, such as LORAN-C, and up
to the latest LiDAR registration methods using keypoints learned with
deep learning (Du, Wang, and Cremers 2020; H. Wang et al. 2022).
We will also briefly touch on related work relevant to other aspects of
this thesis, such as perception, compression, and multi-task learning.

The 1980s and early 90s saw large innovations both in terms of
absolute positioning, thanks to the development of systems such as
GPS, as well as in terms of the newly emerged field of simultaneous
localization and mapping (SLAM). SLAM aims to address the task of
precise localization in environments which lack both prior maps as well
as access to beacon-based systems like GPS, or where access to GPS is
insufficient for the desired precision.

This section covers the major areas of global and online map-based
localization, followed by brief overviews of SLAM and other work
related to the remaining parts of the thesis, such as compression,
multi-task learning, and large-scale localization.

learning rich representations for robot state estimation 23

2.5.1 Reference-Based Localization

The earliest techniques humans have employed for localizing them-
selves have been reference-based. Lakes, mountains, valleys, and ce-
lestial bodies such as the moon, the sun, and the stars have served as
references for globally localizing travelers for many millennia (Reid et
al. 2020). As highlighted in Fig. 2.3, the ranging accuracy tends to
improve by an order of magnitude every decade.

Figure 2.3: The evolution of reference-
based localization error in the 20th
century, from leveraging stars to the
modern GPS. Figure from Reid et al.
(Reid et al. 2020)

Following the development of radio technology, the 20th century
witnessed many iterations of its application in navigation. The ear-
liest systems were the UK’s GEE and the United States LORAN
(Wikipedia Contributors 2023), which relied on triangulating airplane
positions from radio signals.

The development of GPS in the 1970s and 1980s made most ra-
dio navigation systems mostly obsolete10. GPS was soon joined by 10 In spite of the large number of

positive applications of GNSS, ranging
from search and rescue all the way
to how it has revolutionized mapping
and navigation that penetrate our
daily lives, it is worth remembering
the dark history of the first system
from this family: GPS. GPS reached
full operational status in 1995, and its
primary applications were military,
with an emphasis on guiding ICBMs,
as highlighted by one of the core
mission statements of the GPS JPO:
“[D]rop five bombs in the same hole.”
(Parkinson et al. 1996)

equivalent satellite navigation systems from China (BeiDou), Russia
(GLONASS), the EU (GALILEO), and India (NavIC).

The operating principle of GNSS involves solving for the receiver’s
position on the surface of the earth by trilateration, using estimated
ranges to at least three satellites which are in view11. Please refer to

11 While in principle we need four
pseudo-ranges to solve for four un-
knowns, the receiver’s 3D position
plus its clock bias, given that we can
assume the receiver is not located
deep under the surface of the earth,
three readings are enough.

textbooks such as (P. Misra and Enge 2011) for additional details.
While not directly capable of the centimeter-level precision neces-

sary for safe autonomous driving, GNSS systems can be enhanced in a
variety of ways to achieve this goal. GNSS error reduction techniques
can be divided into two major categories: Infrastructure-based and
measurement-based. Techniques from the former category rely on ad-

learning rich representations for robot state estimation 24

ditional infrastructure, such as nearby base stations, to correct their
readings to enhance precision, while those from the latter use more
sophisticated methods to measure satellite ranges more accurately,
leading to improved receiver position estimates. Techniques from both
categories can be combined, as is the case with RTK, which leverages
ground stations (first category) as well as phase shift measurements
(second category) to improve positioning precision. We now present
further details on the major error correction methods.

Differential GNSS (DGNSS). Differential positioning systems
rely on a nearby ground station to correct satellite readings. The re-
ceiver uses code-based positioning, which is a simple and effective
method for estimating satellite ranges. Consumer-grade GNSS re-
ceivers also use code-based positioning. While differential GNSS can
be used on its own to enhance GNSS precision, differential readings
are typically leveraged as part of an RTK system, which further lever-
ages carrier wave phase shift measurements to significantly improve
precision over code-based positioning alone.

Precise Point Positioning (PPP). PPP (Hofmann-Wellenhof,
Lichtenegger, and Wasle 2007) is a protocol which uses live correction
data pertaining to the satellites to integrate measurements over tens of
minutes in order to account for various types of errors, such as due to
atmospheric effects. PPP can typically achieve an accuracy of roughly
10cm (Joubert, Reid, and Noble 2020; Novatel Inc. 2015), without
requiring a nearby reference station12. 12 While PPP does require additional

data in the form of orbit corrections
(ephemeris data) this information is
typically available worldwide with
relatively low latency over a cellular
connection.

While not directly amenable to real-time mobile robotic localization
due to the long convergence time, this technique can be leveraged in
mapping by precisely localizing beacons that robots can later use.
PPP can also be used as an inexpensive way to provide pose ground
truth with reasonable accuracy within a global frame, such as UTM.

PPP implementations typically use an EKF which models the re-
ceiver position, clock errors, tropospheric delay, and carrier-phase
ambiguities as its state (Novatel Inc. 2015).

Real-Time Kinematic (RTK). RTK systems extend code-based
differential GNSS positioning with the carrier phase measurements
also used by PPP, which can significantly increase the accuracy of
range measurement, reaching centimeter-level accuracy under ideal
conditions (satellite line-of-sight, close to a base station) (Novatel Inc.
2015). Unlike PPP, RTK systems require a base station to be within
a few dozen kilometers of the roving receiver (e.g., the SDV). This
means that, in contrast to PPP, RTK rovers no longer need to model
atmospheric / multi-path errors themselves, which enables much faster
convergence times.

Compared to basic DGNSS, RTK is much more accurate but re-
quires more expensive equipment. Furthermore, DGNSS is able to

learning rich representations for robot state estimation 25

operate at a much larger distance from the base station compared to
RTK (Novatel Inc. 2015).

The discussed GNSS error correction techniques are summarized in
the table below.

Table 2.1: Different satellite-based positioning solutions and their
main traits for mobile systems. Based on a Table from (Joubert,
Reid, and Noble 2020).

GPS PPP RTK PPK

Accuracy Order of Magnitude 1.00m 0.10m 0.02m 0.02m
Convergence Time 20s >10min <20s n/A
Requires Correction Service yes yes yes
Requires Nearby Base Station yes yes
Cost $ $$ $$$ $$
Needs Satellite LOS yes yes yes yes
Robust to Temporary Outages yes

Post-Processed Kinematics (PPK). PPK is a less standardized
term than RTK or PPP. PPK generally denotes a solution computed
in a similar matter to RTK, but offline, after an entire dataset was
collected, typically using non-causal information or global optimiza-
tion. PPK can be leveraged in map building or as ground truth for
evaluating state estimation algorithms quantitatively.

PPK follows a similar formulation to RTK, fusing IMU data, GNSS
readings, and base station information with a kinematic model. Unlike
RTK, PPK runs offline after a full sequence of data has been collected.
PPK is typically implemented using a forward-backward filtering
approach, though the implementation details of most commercial
software are not public (R. Li 2023).

PPK can produce higher-accuracy solutions than RTK. Since it
is computed offline, after the fact, it doesn’t require the rover (SDV,
drone, etc.) to have a continuous connection for receiving correction
information, like RTK does. PPK may be used in map building and
for ground truth trajectory estimation, but since it does not run on-
line, it cannot be used directly for autonomous robotics13. 13 Commercial solutions (e.g., Novatel)

can run best-effort RTK online while
logging all the necessary data for
running PPK later. This way, any
outages which may cause temporary
RTK inaccuracies online can be
addressed later with post-processing.

Next-Generation GNSS. As of 2021, the deployment of the next
generation of navigation satellites is well underway. Unlike previous
GNSS systems, which leverage small constellations of satellites in
geosynchronous Medium Earth Orbit (MEO), the next generation
aims to leverage large constellations of micro-satellites in Low Earth
Orbit (LEO). Xona Space Systems is one of the companies currently
developing this technology (Reid et al. 2020). The advantages of this
new paradigm are numerous, and include:

learning rich representations for robot state estimation 26

1. reduced cost,
2. higher precision,
3. improved integrity monitoring, and
4. increased robustness, encryption, and robustness to spoofing at-

tacks14. 14 Given the military applications of
GNSS, spoofing is a common method
of defense against satellite-guided
weaponry. An interesting example
of GPS spoofing was discovered in
Moscow during the Pokemon Go
fever of 2016 when players noticed
large inaccuracies as “the fake signal,
which seems to center on the Kremlin,
relocated anyone nearby to Vnukovo
Airport, 32 km away.” (Hoffer 2017)

The reduction in cost is achieved by using much smaller satellites.
Deploying them in LEO15 is cheaper, as the distance to Earth is at

15 Low Earth Orbit

least 20× smaller compared to MEO.
The dramatic increase in the number of satellites visible at any

given moment has lead to improvements in precision. Xona aims to
launch 300 satellites in LEO. While this is a high number compared
to the 31 GPS satellites, it is still dwarfed by the constellation sizes
of LEO-based internet providers such as Amazon Kuiper or StarLink,
which aim to deploy constellations of over 3,000 and 42,000 satellites,
respectively. In addition to their increased number, the faster mo-
tion of the satellites with respect to the receiver can also improve the
positioning precision (Reid et al. 2020).

Rebuilding a navigation system from scratch allows bypassing the
need for backward compatibility and other legacy systems issues. This
allows encryption and authentication to be built as a core consider-
ation of the involved protocols, leading to improved robustness and
security.

For a more detailed overview of GNSS for autonomous driving,
please refer to the evaluations by (Joubert, Reid, and Noble 2020) and
(Reid et al. 2020).

2.5.2 Geometry-Based Localization

In spite of recent advances in GNSS, these technologies still fail to uni-
versally yield the sub-meter-accurate positioning required to effectively
leverage HD maps and the centimeter-accurate positioning required to
build digital twins for simulation. This is especially the case in areas
without a clear view of the sky, such as urban canyons, inside build-
ings, tunnels, etc. Furthermore, achieving cm-level RTK localization
typically requires expensive hardware as well as costly subscriptions
to correction services. The time required to acquire a fix is sometimes
also a problem, often taking between a few seconds and a few minutes.

To this end, a wide range of alternate approaches to localization
have been developed. The first family of such methods tackles local-
ization by geometrically registering an observation to a 3D model of
a scene, typically using a perspective-n-points (P-n-P) approach. The
idea is to extract local features such as SIFT (Lowe 2004) from im-
ages and find correspondences with the prior geo-registered point sets
(Y. Li et al. 2012, 2012; Dusmanu et al. 2019; Irschara et al. 2009;

learning rich representations for robot state estimation 27

Sattler, Leibe, and Kobbelt 2011; Sattler et al. 2015; L. Liu, Li, and
Dai 2017). (Y. Li et al. 2012) pre-stored point clouds along with SIFT
features for this task, while (L. Liu, Li, and Dai 2017) proposed to use
branch-and-bound to solve the exact 2D-3D registration.

As a prerequisite, these methods require a 3D model of the world
to be built in advance. Cameras perceive a 2D projection of the 3D
scene, so research in this area has focused on building consistent 3D
maps of the world (Agarwal et al. 2009), often using techniques based
on bundle adjustment (Triggs et al. 1999) or multi-view stereo (MVS)
(Yao et al. 2019).

Geometry-based localization can also be performed using LiDAR.
The wide range of work developed for general-purpose point cloud
registration can be leveraged to align observations to a known map.
This includes both local methods such as iterative closest point (ICP)
(Yoneda et al. 2014) and Normal Distribution Transform (NDT)
(Biber and Straßer 2003) which require a coarse initialization in the
rough vicinity of the true location, as well as global ones, which reg-
ister overlapping point clouds without the need for an initial estimate
of the relative transform. This family includes both correspondence-
based methods, such as Fast Global Registration (Q.-Y. Zhou, Park,
and Koltun 2016), Deep Global Registration (Choy, Dong, and Koltun
2020), DH3D (Du, Wang, and Cremers 2020), 3DRegNet (Pais et al.
2020), or Deep Closest Point (Y. Wang and Solomon 2019), as well as
correspondence-free methods, like PHASER (Bernreiter et al. 2021).

While these approaches can be very accurate, several drawbacks
remain. Scalability (maintaining a very large 3D database), for exam-
ple, remains challenging. While fine vocabularies (Sattler et al. 2015;
Havlena and Schindler 2014) and model compression (Camposeco et
al. 2019; Lynen et al. 2020) provide ways to accelerate matching in
large scenes, accuracy suffers, and building and storing 3D models
at city scale requires large engineering efforts. Building systems that
are robust to long-term changes (Sattler et al. 2018) also remains an
active area of research.

2.5.3 Place Recognition

Another prevailing approach in self-localization is place recognition
(M. Bansal and Daniilidis 2014; Hays and Efros 2008; Y. Li et al.
2012; Moosmann and Stiller 2013; Wolcott and Eustice 2014; Arand-
jelovic et al. 2016; Zamir, Hakeem, and Szeliski 2016; Jégou et al.
2011; Gálvez-López and Tardós 2012; Sarlin et al. 2019; Lindenberger,
Sarlin, and Pollefeys 2023; S. Zhu et al. 2023). Place recognition aims
to bypass the need for reference stations or an explicit map, opting to
formulate localization as a similarity search problem.

learning rich representations for robot state estimation 28

In general, methods from this line of work encode sensor readings
(e.g., camera images) with known positions into a low-dimensional rep-
resentation and store them in a compact database16. At query time, 16 For example, a 4 million pixel RGB

image could be projected down to
128 32-bit floating point numbers—a
100,000× compression for 4MP 8-bit
RGB compressed to 1024 32-bit float.

a new sensor reading is received, encoded, and looked up. The pose
for the most similar database entry is retrieved. Given the small size
of the sensor encoding, this setting allows billions of encoded sensor
readings to fit in RAM, with efficient indexing allowing approximate
nearest neighbor queries in milliseconds (Johnson, Douze, and Jégou
2017; Martinez-Covarrubias 2018; Douze et al. 2024).

By designing a sensor encoding process that preserves enough dis-
criminative information, we can achieve robust results. Robustness can
be further improved by geometric checks (Gálvez-López and Tardós
2012). As most of the features used to describe the scene (e.g., 3D line
segments (M. Bansal and Daniilidis 2014) or 3D point clouds (Y. Li
et al. 2012; Moosmann and Stiller 2013; Wolcott and Eustice 2014))
are highly correlated with the appearance of the world, one needs to
update the database frequently. With this problem in mind, (Cum-
mins and Newman 2008; Nelson et al. 2015; Linegar, Churchill, and
Newman 2015) proposed image-based localization techniques that
are, to some degree, invariant to appearance changes. Deep learning
approaches have brought large improvements in computing discrim-
inative descriptors, for example, by training fully convolutional net-
works to predict descriptor feature maps and keypoint heatmaps using
combinations of self-supervision and supervised learning (DeTone,
Malisiewicz, and Rabinovich 2018).

Image retrieval-based localization. Classical methods extract
local invariant features, such as SIFT (Lowe 2004) or SURF (Bay
et al. 2008). and aggregate them into a global descriptor such as vi-
sual bag-of-words (Filliat 2007) or VLAD (Jégou et al. 2011; Torii,
Arandjelovic, et al. 2015). Candidate re-ranking and geometric ver-
ification are sometimes used as a second stage to boost performance
further (Knopp, Sivic, and Pajdla 2010; Sattler et al. 2017). Recent
work has used deep convolutional neural networks (CNNs) to learn
compact visual representations (Arandjelovic et al. 2016; Gordo et
al. 2016; Radenović, Tolias, and Chum 2016; Tolias, Sicre, and Jégou
2016). For instance, NetVLAD (Arandjelovic et al. 2016) uses a CNN
and differentiable VLAD pooling to learn global image representa-
tions for retrieval in an end-to-end manner, and RMAC (Tolias, Sicre,
and Jégou 2016) builds a compact deep feature vector with Region
of Interest (RoI) pooling. (Gordo et al. 2016) extended this work by
leveraging a ranking framework to learn features, as well as the region
pool scheme itself. This process can be enhanced by leveraging coarse
3D models from the internet (Panek, Kukelova, and Sattler 2023).

Hybrid approaches combining place recognition with local feature

learning rich representations for robot state estimation 29

detection have also been proposed. One example is HF-Net (Sarlin et
al. 2019), which trains a joint network to compute a NetVLAD de-
scriptor as well as SuperPoint (DeTone, Malisiewicz, and Rabinovich
2018) local features based on a shared feature backbone, saving com-
putation.

Recent approaches such as SuperGlue (Sarlin et al. 2020) and
LightGlue (Lindenberger, Sarlin, and Pollefeys 2023) cast feature
matching as inference in a graph neural network or a transformer, re-
spectively, learning the process end-to-end by supervising with ground
truth matches. These methods can refine the retrieval result of place
recognition to achieve state-of-the-art localization accuracy on chal-
lenging benchmarks such as HPatches (Balntas et al. 2017) and MSLS
(Warburg et al. 2020).

Many newer approaches move yet another step forward, and extend
learning to the ranking process itself. (Hausler et al. 2021; S. Zhu et
al. 2023) learn to re-rank a set of top candidates obtained through re-
trieval. For example, R2Former (S. Zhu et al. 2023) uses a transformer
to attend to patches from the top-k retrieved candidates in order to
re-rank them and identify the best one with improved accuracy.

LiDAR retrieval-based localization. While handcrafted 3D
descriptors have been used for 3D registration and recognition tasks
(Tombari, Salti, and Di Stefano 2010; Rusu, Blodow, and Beetz 2009),
we are not aware of classical global pooling techniques applied to
LiDAR retrieval-based localization.

Recently, following the success of deep learning in extracting data-
driven features, work has concentrated on learning deep descriptors
from 3D point clouds (L. He, Wang, and Zhang 2016; Dewan, Caselitz,
and Burgard 2018; Klokov and Lempitsky 2017). PointNetVLAD (Uy
and Lee 2018) uses PointNet (Qi, Su, et al. 2017) to generate local
per-point features, which are then aggregated by a VLAD (Arand-
jelovic et al. 2016) layer. PCAN (W. Zhang and Xiao 2019) improves
upon PointNetVLAD by learning an attention map for aggregation,
using an architecture inspired by PointNet++ (Qi, Yi, et al. 2017).
LPD-Net (Z. Liu et al. 2019) achieves improved retrieval results us-
ing a graph neural network to leverage local structure when learning
global descriptors. While these methods yield excellent results, they
operate directly on raw point clouds, which is computationally expen-
sive in general. Recent works have tackled the challenge of efficient
inference either by using specialized sparse 3D convolution operators
(e.g., MinkLoc3D (Komorowski 2021)) or by operating on LiDAR
range view images and exploiting much faster 2D network architec-
tures (e.g., OverlapNet (Xieyuanli Chen et al. 2022) and Overlap-
Transformer (J. Ma et al. 2022)).

In closing, the accuracy of retrieval methods is limited by the den-

learning rich representations for robot state estimation 30

sity and coverage of the underlying database, and finding compact yet
discriminative representations remains difficult.

2.5.4 Pose Regression Methods

Moving one step beyond map-less methods like place recognition,
pose regression methods approach the task of global localization by
implicitly encoding the environment structure, typically in the weights
of a neural network.

Scene coordinate regression methods, such as the influential
work by Shotton et al., which also introduced the widely used “7
Scenes” dataset (Shotton et al. 2013), aim to localize a camera in a
known scene by learning to regress the 3D coordinates of observed
2D pixels directly. This allows the camera pose to be inferred using
a direct solver inside a RANSAC loop, without explicitly storing the
map—the coordinate regression model implicitly encodes it.

(Brachmann et al. 2017) continue this line of work and present Dif-
ferentiable SAmple Consensus (DSAC), a soft relaxation of RANSAC
which enables end-to-end training of hypothesis generation through
the otherwise non-differentiable sampling procedure, demonstrating
its efficiency and robustness in the task of scene coordinate regression.
This work demonstrates the importance of end-to-end training for this
task, with the proposed end-to-end method significantly outperforming
prior methods such as (Shotton et al. 2013), which do not optimize
the feature representations for the end task of camera pose estimation.

However, methods from this line of work are not without their
limitations. Since the regression model needs to encode the map-
ping between observations and absolute scene coordinates, it needs
to be re-trained for every scene, limiting the scalability of methods
from this family. Moreover, these methods struggle to generalize to
large environments, with most evaluations limited to indoor datasets,
or datasets covering around one or two city blocks (e.g., Cambridge
Landmarks (Kendall, Grimes, and Cipolla 2015)).

Recent innovations such as ACE (Brachmann, Cavallari, and
Prisacariu 2023) have nevertheless made great strides in address-
ing the generalization limitations by reusing the backbone across all
scenes, and by accelerating scene-specific training by several orders of
magnitude. Scalability to city-sized scenes, however, remains an open
research question.

Direct regression methods such as PoseNet (Kendall, Grimes,
and Cipolla 2015) represent a similar but streamlined line of work
which aims to directly regress the pose of a query observation in
a known environment (Shotton et al. 2013; Kendall, Grimes, and
Cipolla 2015; Brachmann et al. 2016; Brachmann and Rother 2018;

learning rich representations for robot state estimation 31

Kendall and Cipolla 2016). Unlike scene coordinate methods, ap-
proaches such as PoseNet bypass the fine-grained coordinate regression
stage and instead directly predict the 6-DoF camera pose from the
raw input pixels using a convolutional neural network. These meth-
ods have two major advantages. First, they are conceptually simple
and perform well in small and medium-sized environments. Second,
just like screen coordinate regression, direct regression methods enable
global localization without the need for an external database, leading
to low memory usage and fast inference.

While promising, these methods have been shown to not gener-
alize well to city-scale localization (Sattler et al. 2018, 2019). Their
inability to work in areas on which they have not been trained makes
transitions to new environments computationally demanding, as it
would require collecting sensor data and ground truth pose informa-
tion from a novel environment, then training a neural network before
deploying a robot to the environment.

Multi-Task Localization. Recent work has explored the com-
plementarity of semantics, temporal information, and global pose
regression (Valada, Radwan, and Burgard 2018; Radwan, Valada,
and Burgard 2018; Schönberger et al. 2018; P. Wang et al. 2018).
VLocNet++ (Radwan, Valada, and Burgard 2018) combines the pose
regression of PoseNet with visual odometry and semantic segmenta-
tion in a multi-task setting, showing that jointly solving these tasks
can be mutually beneficial while also improving run-time efficiency by
sharing computation between the tasks.

2.5.5 Lightweight Map-Based Localization

While retrieval, regression, and structure-based localization meth-
ods have achieved promising performance on a wide range of bench-
marks, they either suffer from large costs associated with storing
image databases or lack the accuracy required for safe autonomous
driving in safety-critical scenarios.

Likewise, pure reference-based methods like GPS can achieve
automotive-grade accuracy but only by leveraging base station cor-
rections in the form of RTK, which limits scalability, as the improve-
ments are conditioned on the availability of such nearby stations (Wan
et al. 2018; P. Misra and Enge 2011). Scalability is further limited by
the subscription costs required to access base station corrections in
real-time.

As highlighted in the introduction, one main reason to perform
localization is to leverage various kinds of data already encoded in
a map, such as a navigation road graph or detailed lane informa-
tion. Many approaches have, therefore, been developed to bypass the

learning rich representations for robot state estimation 32

aforementioned issues and instead leverage the semantic information
already encoded in the map required by the autonomy system. Both
high-level information, like a routing graph, as well as low-level in-
formation, like the exact lane structure, can be leveraged to achieve
high-precision localization superior to that of GPS without reliance on
dense 3D models, sparse geo-referenced databases, or black-box neural
networks.

One line of work uses “lightweight’’ maps like OpenStreetMap
and Google Maps for precise localization. (Brubaker, Geiger, and
Urtasun 2013) demonstrated a lightweight and scalable solution based
on particle filtering which leveraged crowdsourced OpenStreetMap
data to globally localize vehicles with sub-meter accuracy in city-sized
maps using cues such as road curvature. (W.-C. Ma et al. 2017) built
upon this framework to leverage additional cues, such as the road type
and the position of the sun, to further improve robustness. Given an
initial estimate of the vehicle position, (Floros, Zander, and Leibe
2013) exploited the local shape of the ego-trajectory to self-localize
within a small region.

These works are appealing since they only require a cartographic
map. However, the localization accuracy is strongly limited by the
performance of odometry. The semantic cues are only used to resolve
ambiguous modes and speed up the inference procedure. Second,
the computational complexity is a function of the uncertainty in the
map, which remains fairly large when dealing with maps that have
repetitive structures.

LaneLoc (Schreiber, Knöppel, and Franke 2013) proposed to use
lane lines as localization cues. Towards this goal, the authors manu-
ally annotated lane markings over the LiDAR intensity map. The lane
markings are then detected online using a stereo camera and matched
against the ones in the map. (Welzel, Reisdorf, and Wanielik 2015)
and (Qu, Soheilian, and Paparoditis 2015) utilize traffic signs to assist
image-based vehicle localization. Specifically, their approach detects
traffic signs from images and matches them against a geo-referenced
sign database, after which it conducts local bundle adjustment to esti-
mate a fine-grained pose. However, the effectiveness of such methods
depends on perception performance and does not work for regions
where such cues are absent. More recently, (Schönberger et al. 2018)
built dense semantic maps using image segmentation and conducted
localization by matching both semantic and geometric cues.

2.5.6 Dense High-Definition Maps

While visual place recognition and lightweight localization can dis-
ambiguate the robot’s location and provide a good estimate of its

learning rich representations for robot state estimation 33

position within a map, methods belonging to this category are still
unable to achieve the centimeter-level precision necessary for tasks like
safe autonomous driving or 3D reconstruction.

In order to achieve performance of this magnitude, the use of
high-definition maps (HD maps) has gained attention in recent years
(Ziegler et al. 2014; Levinson, Montemerlo, and Thrun 2007; Levinson
and Thrun 2010; Wolcott and Eustice 2015, 2014; Wan et al. 2018).
The general idea is to build an accurate map of the environment of-
fline by aligning multiple sensor passes over the same area. In the
online stage, the system is able to achieve sub-meter-level accuracy by
matching the sensory input against the HD map.

While map matching has been studied in broader contexts since
the 70s (Kuglin 1975), it was the landmark paper by (Levinson, Mon-
temerlo, and Thrun 2007) that popularized the use of map matching
for self-driving vehicle localization. The authors proposed building
2D bird’s-eye view LiDAR intensity maps offline with Graph-SLAM
(Thrun and Montemerlo 2006) and used particle filtering and Pearson
product-moment correlation to localize against them. Subsequent work
(Levinson and Thrun 2010; Wolcott and Eustice 2015) highlights the
importance of encoding variance in the map data, in order to robustly
predict which online observations are likely unreliable, e.g., due to
originating in areas which are often occluded during mapping.

These methods are capable of real-time operation on a CPU using
map resolutions up to 5 cm/px (Levinson, Montemerlo, and Thrun
2007). However, a quasi-manual calibration procedure is needed to
meaningfully compare LiDAR intensities between runs, which severely
limits their scalability to large fleets and environments. In a similar
fashion, (Wan et al. 2018) use BEV LiDAR intensity images in con-
junction with differential GPS and an IMU to robustly localize against
a pre-built map, using a Kalman filter to track the uncertainty of the
fused measurements over time.

Finally, (Y. Zhou et al. 2020) demonstrate that LiDARs may not
be necessary for accurate and robust localization in LiDAR maps.
Instead, the authors train a convolutional neural network to match
between visual features perceived online and features stored in a Li-
DAR map. Instead of explicitly matching features like in, e.g., SLAM,
the method performs online localization by an exhaustive search: for
a given initial pose guess, such as one predicted by a pose filter, the
system generates a grid of nearby candidates in the nearby (x, y, yaw)
space. It then evaluates matching scores between projected map fea-
tures and online-computed visual features at each candidate pose,
aggregating per-pixel scores to produce one score per pose hypothesis.
These scores are then used as observation weights in order to yield a
belief over the vehicle’s current pose.

learning rich representations for robot state estimation 34

2.5.7 Simultaneous Localization and Mapping (SLAM)

In many applications, it is not possible to build a map of an environ-
ment in advance. For example, many robots in domains such as space
exploration or search-and-rescue need to operate autonomously in a
new environment while mapping it. In this case, robot poses, as well
as the environment map, need to be estimated jointly, resulting in
the Simultaneous Localization and Mapping (SLAM) task. SLAM has
been one of the pillars of robotics research since the 1980s (Bailey and
Durrant-Whyte 2006; Engel, Schöps, and Cremers 2014; Mur-Artal,
Montiel, and Tardós 2015).

More formally, given a sequence of images, point clouds, or other
sensor readings, SLAM is tasked with jointly estimating an accurate
and consistent robot trajectory together with a map of the environ-
ment without any prior information on its structure.

This can be accomplished by estimating relative robot poses be-
tween consistent frames through feature correspondences followed by
pose estimation, which is typically alternated with periodic optimiza-
tions of the entire scene structure.

Unfortunately, since the estimation error is usually biased, accu-
mulated errors cause gradual estimation drift as the robot moves,
resulting in large errors. Loop closure is a common technique used to
fix this issue. Typically based on some form of place recognition (cf.
Chapter 2.5.3), loop closure constrains the robot trajectory, enabling
accumulated drift to be reduced by propagating information from an
already-visited part of the environment.

Visual SLAM. Cameras have been widely studied in SLAM ap-
plications. While inexpensive and widely available, cameras are un-
able to perceive direct scale, which adds additional challenges to the
SLAM problem in the form of scale ambiguities. Examples include
monoSLAM (Davison et al. 2007), PTAM (Klein and Murray 2007),
ORB-SLAM (Mur-Artal and Tardós 2017), and Kimera (Rosinol et al.
2020).

While a detailed treatment of visual SLAM and visual bundle
adjustment lies beyond the scope of this thesis, the foundational
overview by (Triggs et al. 1999) provides a detailed overview of the
nature of the problem, main challenges, common formulations, and
efficient solvers, while also discussing background knowledge for and
the history of large-scale least-squares optimization.

LiDAR SLAM. Finally, in recent years, LiDAR SLAM methods
such as ICP-SLAM, LeGO-LOAM, and LIO-SAM (Shan et al. 2020)
have demonstrated extremely accurate map building, with front-end
odometry drifting less than a meter per km (Shan et al. 2020). Multi-
sensor approaches such as LIC-Fusion (Zuo et al. 2020) fuse LiDAR

learning rich representations for robot state estimation 35

odometry estimates with visual estimates obtained by matching sparse
camera features, further boosting accuracy and increasing robustness
to sensor failures.

Neural SLAM. Given the explosion in research on neural 3D
representations in the last four years, a growing body of work has
explored these avenues for SLAM. The envisioned benefits include
more robust 3D maps thanks to the neural representations’ natural
ability to in-paint, as well as improved camera tracking thanks to
(meta-)learned registration and alignment priors.

Earlier papers like NeRF-- (Z. Wang et al. 2021) and BARF (Lin
et al. 2021) extended neural rendering (Mildenhall et al. 2021) to
optimize over poses, in addition to the radiance field itself. iMapping
(Sucar et al. 2021) proposed to do so incrementally, describing several
techniques to ensure efficient operation, such as information-guided
pixel sampling. Later methods such as (Z. Zhu et al. 2022) extend
the approach to larger scenes using multi-resolution voxel hashing
(Müller et al. 2022), or to multi-sensor calibration settings by also
incorporating sensor intrinsics into the optimization procedure (Herau
et al. 2024; Z. Yang et al. 2024).

While the goal of SLAM is to build globally consistent maps and
trajectories, a subset of papers simply focus on estimating a good cam-
era trajectory without worrying about loop closure. These methods
are known as visual (Engel, Koltun, and Cremers 2018) or LiDAR (J.
Zhang and Singh 2014) odometry.

2.5.8 Visual and LiDAR Odometry

Unlike SLAM, pure odometry methods build incremental estimates of
the trajectory without enforcing global consistency (Geiger, Ziegler,
and Stiller 2011; Engel, Koltun, and Cremers 2018; Sen Wang et al.
2017; Xu et al. 2022). This may reduce the accuracy of the final tra-
jectory and maps; however, for many tasks the resulting accuracy
is sufficient and its simplified computation also reduces the cost of
backend operations (no loop closure checks, no PGO, simple or non-
existent map management, etc.).

Visual odometry may be computed using keypoint features (Geiger,
Ziegler, and Stiller 2011) or by exploiting photometric optimization
to achieve fast and effective estimates without relying on keypoint ex-
traction, which may be unreliable in textureless environments (Engel,
Koltun, and Cremers 2018). Recent approaches such as DeepVO (Sen
Wang et al. 2017) have explored the use of deep learning to replace
traditional keypoint matching or photometric optimization. Neverthe-
less, given their reliance on prior information encoded in HD maps, it
is common for aaaa to localize in existing maps rather than perform

learning rich representations for robot state estimation 36

SLAM or visual odometry.

2.5.9 Matching Networks

Many localization approaches, such as (Levinson, Montemerlo, and
Thrun 2007), rely on measuring the affinity between an observation
and a particular location in the map. While papers such as this one
leverage traditional functions from the signal processing literature,
like normalized cross-correlation, recent papers have explored ways of
learning these functions from data. Many modern approaches train
CNNs17 to measure similarity between patches across images and 17 Convolutional Neural Networks
volumes (Long, Zhang, and Darrell 2014; W. Luo, Schwing, and Ur-
tasun 2016; Zhuoyuan Chen et al. 2015; Zbontar and LeCun 2015;
Zagoruyko and Komodakis 2015). The pioneering work of (Long,
Zhang, and Darrell 2014) directly transfers low-level CNN features
pre-trained on ImageNet to feature matching. In (Zbontar and LeCun
2015), a siamese network is trained to match local patches, with ap-
plications in stereo matching. (W. Luo, Schwing, and Urtasun 2016)
improve the matching efficiency by eliminating the patch-based in-
ference, while also producing confidence estimates for the computed
disparities. GC-Net (Kendall et al. 2017) learns not just the repre-
sentations but the matching operation itself, which is modeled as a
sequence of stacked hourglass CNNs. EpicFlow (Revaud et al. 2015)
extends this framework by densifying the sparse matches using a novel
interpolation scheme before performing variational energy minimiza-
tion.

More recently, RAFT (Teed and Deng 2020) demonstrated robust
optical flow estimation and promising sim2real generalization by learn-
ing to iteratively update flow estimates with a recurrent network,
mirroring the steps of a first-order optimization algorithm. In addition
to winning the best paper award at ECCV 2020, RAFT’s success has
been demonstrated by the richness of works that build on its struc-
ture to improve scene flow (Teed and Deng 2021b) or SLAM (Teed
and Deng 2021a). The rapid advances in learned affinity functions
highlight the importance of exploiting data-driven priors for matching
tasks.

2.5.10 Compression

Compression has been widely studied in computer science ever since
Claude Shannon (Shannon 1948) first proposed the source coding the-
orem. This has led to a wide array of applications in the field, rang-
ing from the development of error correction codes like turbo codes
(Berrou, Glavieux, and Thitimajshima 1993) to fast and effective
compression algorithms such as DEFLATE (Wikipedia Contributors

learning rich representations for robot state estimation 37

2024a) (the foundation of formats such as zip) and Snappy (Wikipedia
Contributors 2024b).

Compression methods can be categorized in two ways. They can
be classified based on their ability to perfectly recover the original
data into lossy and lossless, and based on their target domain into
general-purpose and domain-specific. General-purpose algorithms
such as DEFLATE are applicable to any kind of data, from text to
multimedia, and they are typically lossless. Special-purpose algorithms
are tailored to a specific kind of data, such as images, and exploit the
particular structure of this data in order to achieve results superior
to those of general-purpose algorithms. In this thesis, we focus on
the domain-specific task of compressing map data encoded as images,
using both lossless and lossy approaches.

Image Compression. Image compression is a classical subfield
of computer vision and signal processing. It has seen a great deal of
progress in the past few years thanks to the development of hardware
acceleration and the advent of deep learning (Yibo Yang et al. 2023).
In most modern incarnations, a learning-based compression method
consists of an encoder network, a quantization mechanism (e.g., bi-
nary codes), and a decoder network which reconstructs the input from
the quantized codes. Recent learning-based approaches (Toderici et
al. 2017; Rippel and Bourdev 2017; Mentzer et al. 2018) consistently
outperform classic compression methods like JPEG2000 and BPG.
While earlier works on learned compression typically used a stan-
dard autoencoder architecture (Balle, Laparra, and Simoncelli 2016),
thereby imposing a fixed code size for all images, (Toderici et al. 2016)
overcome this limitation by using a recurrent neural network as an
encoder. Subsequently, (Toderici et al. 2017) extended the previous
results, which were typically presented on resolutions of 64 × 64 pixels
or less due to performance considerations, demonstrating state-of-the-
art compression rates on full-resolution images. (Mentzer et al. 2018)
proposed a pipeline that obtained results on par with the state of the
art while also being trainable end-to-end (encoder, quantizer, and de-
coder). Nevertheless, in spite of their superior compression rates, it is
very difficult for these approaches to compete with the speed, energy
efficiency, broad compatibility, and ubiquity of modern codecs such as
JPEG and AVIF.

Map Compression. In spite of their advantages in providing a
strong signal for accurate localization, maps can end up with huge
storage requirements, particularly when dense representations are
used, like in the case of LiDAR maps (Yoneda et al. 2014; Levinson,
Montemerlo, and Thrun 2007).

Compression has also been studied in the task of localization and
mapping. (Camposeco et al. 2019) proposed a hybrid approach con-

learning rich representations for robot state estimation 38

sisting of downsampling 3D map points and compressing their de-
scriptors, while (Q. Zhou et al. 2022) demonstrated promising visual
localization results without the need to store point descriptors at all.
Similar techniques can also be applied to dense maps. (Bârsan et al.
2018) showed that even simplistic pruning of uncertain parts in vol-
umetric maps can dramatically reduce memory usage with negligible
costs in map density. More recently, (Wiesmann et al. 2022) and (Cai
et al. 2024) have proposed learning-based approaches for online and
global localization, respectively, using compressed LiDAR maps.

2.5.11 Perception, Prediction, and Planning

Object Detection and Motion Forecasting. Detecting actors
and predicting their future motion from sensor data is one of the core
tasks in autonomous driving. While object detection (B. Yang, Luo,
and Urtasun 2018; Shi, Wang, and Li 2019; Meyer et al. 2019) and
motion forecasting (Zheng, Yue, and Hobbs 2016; Cui et al. 2019;
Chai et al. 2020; Gao et al. 2020; Phan-Minh et al. 2020; N. Mu et
al. 2024) can be modeled as independent tasks, models that jointly
perform both tasks (W. Luo, Yang, and Urtasun 2018; Casas, Luo,
and Urtasun 2018; Liang et al. 2020; Zhishuai Zhang et al. 2020; Y.
Hu et al. 2023) have been shown to provide a number of benefits,
such as fast inference, uncertainty propagation, and overall improved
performance.

Multi-task learning for perception. Compared to end-to-
end approaches for autonomous agents that learn to directly map
sensor readings to control output (Bojarski et al. 2016; M. Bansal,
Krizhevsky, and Ogale 2019; Kendall et al. 2019), multi-task modular
approaches have been shown to perform better empirically (B. Zhou,
Krähenbühl, and Koltun 2019), while also being more interpretable
thanks to human-readable intermediary representations like semantic
segmentation (B. Zhou, Krähenbühl, and Koltun 2019), object de-
tections (Zeng et al. 2020), occupancy forecasts (Sadat et al. 2020),
and planning cost maps (Zeng et al. 2019). Furthermore, (Liang et
al. 2019) have shown that tasks like mapping, object detection, and
depth completion can be mutually beneficial when formulated under a
unified architecture.

The wide range of recent multi-task learning approaches can be
divided into two major areas. One line of work is focused primarily
on developing and understanding network architectures, such as those
leveraging a common backbone with task-specific heads (Collobert
and Weston 2008; Kaiser et al. 2017; Kendall, Gal, and Cipolla 2018;
Teichmann et al. 2018; W. Luo, Yang, and Urtasun 2018; Sarlin et
al. 2019; Du, Wang, and Cremers 2020; Cao, Araujo, and Sim 2020),

learning rich representations for robot state estimation 39

cascaded approaches where some tasks rely on the outputs of others
(Dai, He, and Sun 2016; Hashimoto et al. 2017; K. He et al. 2017;
Zeng et al. 2019, 2020), or cross-talk networks such as Cross-Stitch (I.
Misra et al. 2016), which have completely separate per-task networks,
but share activation information.

Modular learning approaches, such as Modular Meta-Learning
(Alet, Lozano-Pérez, and Kaelbling 2018), aim to construct reusable
modular architectures which can be re-combined to solve new tasks.
Side-Tuning (J. O. Zhang et al. 2020) proposes an incremental ap-
proach where new tasks are added to existing neural networks in the
form of additive side-modules that are easy to train, and have the
advantage of leaving the weights of the original network unchanged,
bypassing issues such as catastrophic forgetting. Recently, approaches
such as EmerNeRF (J. Yang et al. 2023) have proposed formulations
which unify perception with novel view synthesis by integrating volu-
metric rendering objectives into perception pre-training.

Another line of work is concerned with the optimization process
itself. The most straightforward approach is sub-task weighting, which
may be based on uncertainty scores (Kendall, Gal, and Cipolla 2018),
learning speed (Zhao Chen et al. 2018), or performance (M. Guo
et al. 2018). Other methods have explored multi-task learning by
performing multi-objective optimization explicitly (Sener and Koltun
2018), by regularizing task-specific networks through soft parameter
sharing (Yongxin Yang and Hospedales 2017), or through knowledge
distillation (Buciluǎ, Caruana, and Niculescu-Mizil 2006; Clark et al.
2019). Please see (Crawshaw 2020) for a detailed survey of multi-task
deep learning.

Planning Under Pose Uncertainty. The task of planning ro-
bust trajectories under pose uncertainty has been studied in the past,
with previous methods formulating it as a continuous POMDP which
can be solved with an iterative linear-quadratic-Gaussian method (van
den Berg, Patil, and Alterovitz 2012), or as an optimal control prob-
lem solved using model-predictive control (Indelman, Carlone, and
Dellaert 2015). (van den Berg, Patil, and Alterovitz 2012) have stud-
ied motion planning under uncertainty, and formulated the problem as
a continuous POMDP, solving it using an iterative Linear-Quadratic-
Gaussian method. (Indelman, Carlone, and Dellaert 2015) likewise
operate in a continuous domain, casting motion planning as an opti-
mal control problem and solving it using a model-predictive control
method. More recently, (Artuñedo et al. 2020) focus on autonomous
vehicles and incorporate the pose uncertainty in a probabilistic map
representation that is then leveraged by a sampling-based planner,
while (Zichao Zhang and Scaramuzza 2020) propose an efficient way
of estimating visual localization accuracy for use in motion planning.

learning rich representations for robot state estimation 40

Finally, (Amini et al. 2019) achieve robust planning in the face of
coarse topometric maps and inaccurate localization by learning to
predict distributions over control commands using a variational for-
mulation. However, none of these approaches model other dynamic
actors and the uncertainty in their own motion, and they do not study
the complex interplay between pose uncertainty and state-of-the-art
perception systems.

System-Level Analysis. A number of recent papers have studied
the correlations between task-level metrics, such as object detection
and system performance (Philion, Kar, and Fidler 2020). This line
of work has shown that while task-level metrics serve as good predic-
tors of overall system performance, they are unable to differentiate
between similar errors that can, however, lead to very different sys-
tem behaviors. A related line of work analyzed the impact of sensor
and inference latency on object detection in images (M. Li, Wang, and
Ramanan 2020) and LiDAR (Han et al. 2020; Frossard et al. 2020).
At the same time, the simultaneous localization and mapping (SLAM)
community (Nardi et al. 2015; Davison 2018; Bujanca et al. 2019) has
recently proposed extending SLAM evaluation beyond trajectory ac-
curacy (Geiger et al. 2013), toward system-level metrics like latency,
power usage, and computational cost.

41

3
Localization with Sparse Semantic Maps

3.1 Introduction

High-definition maps (HD maps) are a fundamental component of
most self-driving cars, as they contain useful information about the
static part of the environment. The locations of lanes, traffic lights,
and crosswalks, as well as the associated traffic rules are often encoded
in the maps. Such maps encode the prior knowledge about any scene
the autonomous vehicle may encounter.

In order to be able to leverage HD maps, self-driving cars have to
localize themselves with respect to the map. The accuracy require-
ments in localization are very strict, and only a few centimeters of
error are typically tolerated in such safety-critical scenarios. As dis-
cussed extensively in Chapter 2.5, over the past few decades, a wide
range of localization systems has been developed based on different
sensors, ranging from GPS to visual place recognition and map match-
ing.

To overcome the limitations of GPS and IMU, place recogni-
tion techniques have been developed. These approaches store what
the world looks like either in terms of geometry (e.g., LiDAR point
clouds), visual appearance (e.g., SIFT features, LiDAR intensity), or
semantics (e.g., semantic point cloud), and formulate localization as a
retrieval task. Extensions of classical methods such as iterative closest
point (ICP) are typically employed for geometry-based localization
(Yoneda et al. 2014; Aghili and Su 2016). Unfortunately, geometric
approaches suffer in the presence of repetitive patterns that arise fre-
quently in scenarios such as highways, tunnels, and bridges. Visual
recognition approaches (Cummins and Newman 2008) pre-record the
scene and encode the “landmark’’ visual features. They then perform
localization by matching perceived landmarks to stored ones. How-
ever, they often require capturing the same environment for multiple
seasons and times of the day. Recent work (Schönberger et al. 2018)
builds dense semantic maps of the environment and combines both

learning rich representations for robot state estimation 42

semantics and geometry to conduct localization. However, this method
requires a large amount of dense map storage and cannot achieve
centimeter-level accuracy.

While place recognition approaches are typically fairly accurate,
the costs associated with ensuring the stored representations are up to
date can often be prohibitive. They also require substantial amounts
of storage on board. Several approaches have been proposed to pro-
vide affordable solutions to localization by exploiting coarse maps that
are freely available on the web (Brubaker, Geiger, and Urtasun 2013;
W.-C. Ma et al. 2017). Despite demonstrating promising results, the
accuracy of such methods is still in the order of a few meters, which
does not meet the requirements of safety-critical applications such as
autonomous driving.

Sensor Data Lane Detection
Result

Perceived Signs in
BEV

Lightweight Map
Lane Graph

BEV Sign Map

GPS

Prediction from
time (t - 1) + IMU

and Encoders

Posterior Probability
over Pose
at Time (t)

Correlation over
x, y, and yaw

Correlation

Longitudinal direction

Lane Localization Term

GPS Localization Term

Prediction Term

Sign Localization Term

Lateral
direction

Yaw

Bird’s-Eye View (BEV) LiDAR

Front-Facing Monocular Camera

Correlation over
x, y, and yaw

Figure 3.1: System architecture.
Given the camera image and LiDAR
sweep as input, we first detect lanes
in the form of a truncated inverse
distance field, and detect signs as
a bird’s-eye view (BEV) probabil-
ity map. The detection output is
then passed through a differentiable
rigid transform layer (Jaderberg et
al. 2015) under multiple rotational
angles. Finally, the inner-product
score is measured between the inferred
semantics and the map. The proba-
bility score is merged with GPS and
vehicle dynamics observations, and
the inferred pose is computed from
the posterior using soft-argmax. The
camera image on the left contains an
example of a sign used in localization,
highlighted with the red box.

With these challenges in mind, in this chapter, we propose a lightweight
localization method that does not require detailed knowledge of the
appearance of the world (e.g., dense geometry or texture). Instead,
we exploit a semantic map containing lane graphs and the locations
of traffic signs together with vehicle dynamics. Traffic signs provide
information in the longitudinal direction, while lanes help avoid lateral
and angular drift. These cues are complementary to each other, and
the resulting maps can be stored in a fraction of the memory necessary
for dense HD maps, which is important as self-driving cars need to
operate in large environments such as entire metropolitan areas.

Following the framework presented in Chapter 2.4.2, we formulate
the localization problem as a Bayes filter which leverages observations
based on matching online semantic cues to semantic information en-
coded in the map. We demonstrate the effectiveness of our approach
on North American highways, which are challenging for current place
recognition approaches as repetitive patterns are common and driv-
ing speeds are high. Our experiments on more than 300 km of testing
trips showcase that we are able to achieve 0.05m median lateral ac-

learning rich representations for robot state estimation 43

curacy and 1.12m median longitudinal accuracy, while using roughly
three orders of magnitude less storage than previous map-based ap-
proaches (0.55MiB/km2 vs. the 1.4GiB/km2 required for dense point
clouds).

LiDAR Sweep

BEV Rasterization

LiDAR Sweep

LiDAR Sweep

Unproject into 3D

Unproject into 3D

Unproject into 3D 2D Traffic Sign Segmentation

 2D Traffic Sign Segmentation

.
 .

Input Images 2D Traffic Signs 3D Signs

Algined Point Cloud
(Non-sign points shown only for

reference.)

Final Traffic Sign Map

(multiple passes through
the same area)

Co-Registration

Co-R
eg

istr
atio

n

Co-Registration

 2D Traffic Sign Segmentation

Figure 3.2: The process used to
construct our traffic sign maps.
We first detect signs in 2D using
semantic segmentation in the camera
frame and then use the LiDAR points
to localize the signs in 3D. Mapping
can aggregate information from
multiple passes through the same
area using the ground truth pose
information and can function even in
low light, as highlighted in the middle
row, where the signs are correctly
segmented even at night time. We use
this information to build the traffic
sign map automatically.

3.2 Lightweight HD Mapping

In order to conduct efficient and accurate localization, a compressed
yet informative representation of the world needs to be constructed.
Ideally, our HD maps should be easy to (automatically) build and
maintain at scale, while also enabling real-time broadcasting of map
changes between a central server and the fleet. This places stringent
storage requirements that traditional dense HD maps fail to satisfy.

In this chapter, we tackle these challenges by building sparse HD
maps containing just the lane graph and the locations of traffic signs.
These modalities provide complementary semantic cues for local-
ization. Notably, the storage needs for our maps are three orders of
magnitude smaller than traditional LiDAR intensity maps (Levinson
and Thrun 2010; Wolcott and Eustice 2015; Levinson, Montemerlo,
and Thrun 2007) or 3D geometric maps (Yoneda et al. 2014).

Lane Graph. Most roads have visually distinctive lanes that de-
termine the expected trajectory of vehicles and are compliant with the
traffic rules. Most self-driving cars store this prior knowledge as lane
graphs L.

A lane graph is a structured representation of the road network de-
fined as a set of polygonal chains (polylines), each of which represents
a lane boundary. We refer the reader to Fig. 3.1 for an illustration of

learning rich representations for robot state estimation 44

Observation probabilities Poster ior over pose at time (t)

Note: The above distributions are over the (x, y) component of our
pose. The ? dimension is not displayed for simplicity.

Figure 3.3: Qualitative results.
A bird’s-eye view of the last five
LiDAR sweeps (left), which are used
for the lane detection, together with
the observation probabilities and
the posterior (middle), followed by a
comparison between the localization
result, the ground truth pose, and
GPS (right). The (x, y)-resolution
of each probability distribution is
1.5m laterally (vertical) and 15m
longitudinally (horizontal).

a lane graph. Lane graphs provide useful cues for localization, particu-
larly in the lateral position and the vehicle heading.

Traffic Signs. Traffic signs are common semantic landmarks which
are sparsely yet systematically present in cities, rural areas, and high-
ways. Their presence provides useful cues that can be employed for
accurate longitudinal localization. Our method relies on automatically
built sparse HD maps that include traffic signs. Toward this goal,
we exploit multiple passes of our vehicles over the same region and
identify the signs by exploiting image-based semantic segmentation
followed by 3D sign localization using LiDAR via unprojection from
pixel to 3D space.

Note that in our map, we only store points that are estimated to be
traffic signs above a certain confidence level. After that, we rasterize
the sparse points to create the traffic sign presence probability map
T in bird’s-eye view (BEV) at 5cm per pixel. This is a very sparse
representation containing all the traffic signs. The full process is con-
ducted without any human intervention. Fig. 3.2 depicts the traffic
sign map-building process and an example of its output.

3.3 Localization as Bayes Inference with Deep Semantics

We follow the histogram filtering approach introduced in Chapter 2.4.2
to localize against lightweight HD maps.

This family of methods performs map-based localization in the
framework of Bayesian filtering, using either a histogram or particles
to represent the state distribution. The key to both approaches is ob-
servation modeling: given the known map, an observation, and a pose
hypothesis (a particle in the case of particle filtering, or a cell in the
histogram case), any algorithm from this family must determine the
likelihood that the current observation was made at that hypothesis.

learning rich representations for robot state estimation 45

3.3.1 Probabilistic Pose Filter Formulation

Our localization system exploits a wide variety of sensors: GPS, IMU,
wheel encoders, LiDAR, and cameras. These sensors are available in
most self-driving vehicles. The GPS provides a coarse location with
several meters of accuracy; an IMU captures vehicle dynamic mea-
surements; the wheel encoders measure the total travel distance; the
LiDAR accurately perceives the geometry of the surrounding area
through a sparse point cloud; images capture dense and rich appear-
ance information. We assume our sensors are calibrated and neglect
the effects of suspension, unbalanced tires, and vibration. As shown
in our experiments, the influence of these factors is negligible and
other aspects such as sloped roads (e.g., on highway ramps), do not
have an impact on our localizer. Therefore, the vehicle’s pose can
be parametrized with only three degrees of freedom (instead of six)
consisting of a 2D translation and a heading angle w.r.t. the map coor-
dinate’s origin, i.e., x = {t, θ}, where t ∈ R2 and θ ∈ (−π, π], since the
heading is parallel to the ground plane.

Following the framework discussed Chapter 2.4.2, we factorize the
posterior distribution over the vehicle pose into components corre-
sponding to each modality, as shown in Eq. (3.2).

Let Gt be the GPS readings at time t and let L and T represent
the lane graph and traffic sign maps respectively, with M = {L, T }
encompassing all map data. We estimate the vehicle dynamics Xt from
both IMU and the wheel encoders smoothed through an extended
Kalman filter, which is updated at 100Hz. This component is separate
from the main localizer, and its running estimate is treated as an
input, following a loosely coupled philosophy.

The localization task is formulated as a histogram filter aiming
to maximize the agreement between the observed and mapped lane
graphs and traffic signs while respecting vehicle dynamics. Following
Eq. (2.6), we have

Belt(x) = η · Pobs(Zt|x;M,w)Belt|t−1(x|Xt), (3.1)

where in the current implementation, Pobs encompasses three compo-
nents: two BEV terms based on Eq. (2.10), one for the lanes and one
for the signs, and one GPS term based on Eq. (2.9).

Putting it together, this results in the following equation for com-
puting the posterior over the pose at time t:

Belt(x) = η · PLane(Zt|x;L,wLane)PSign(Zt|x; T ,wSign)

PGPS(Gt|x)Belt|t−1(x|Xt).
(3.2)

Belt(x) is the posterior probability of the vehicle pose at time t; η
is a normalizing factor to ensure the sum of all probability is equal

learning rich representations for robot state estimation 46

to one; w = {wLane,wSign} are sets of learnable parameters, and
Zt = {It, Ct} is the sensory measurement tuple composed of LiDAR
It and camera Ct. This probabilistic equation is depicted visually in
Fig. 3.3. Note that by recursively solving Eq. (3.2), we can localize the
vehicle at every step with an uncertainty measure that can propagate
to the next step. We now describe each new energy term in more
detail. Please refer to Chapter 2.4.2 for descriptions of PGPS and
Belt|t−1(·).

Figure 3.4: Dataset sample and
inference results. Our system
detects signs in the camera images
(note the blue rectangle on the right
side of the first image) and projects
the sign’s points in a top-down view
using LiDAR (second image). It uses
this result in conjunction with the
lane detection result (third image)
to localize against a lightweight map
consisting of just signs and lane
boundaries (fourth image).

Lane Observation Model. We define our matching energy to
encode the agreement between the lane observation from the sensory
input and the map. Our probability is computed by a normalized
matching score function that utilizes the existing lane graph and com-
pares it to detected lanes. To detect lanes we use a real-time multi-
sensor convolutional network (Bai et al. 2018) which was state-of-
the-art at the time of publication. The inputs to the network are a
front-view camera image and the raw LiDAR intensity measurements
projected onto BEV. The network output is the inverse truncated dis-
tance function to the lane graph in the overhead view. Specifically,
each pixel in the overhead view encodes the Euclidean distance to the
closest lane marker, up to a truncation threshold of 1m. We refer the
reader to Fig. 3.4 for an illustration of the neural network’s input and
output.

To compute the probability, we first orthographically project the
lane graph L onto overhead view such that the lane detection output
and the map are under the same coordinate system. The overhead
view of the lane graph is also represented using a truncated inverse
distance function. Given a vehicle pose hypothesis x, we rotate and
translate the lane detection prediction accordingly and compute its
matching score against the lane graph map. The matching score is an
inner product between the lane detection and the lane graph map

PLane ∝ s (π (fLane(Zt;wLane), x) ,L) , (3.3)

where fLane is the deep lane detection network and wLane are the net-
work’s parameters. π is a 2D rigid transform function to transform the
online lane detection to the map’s coordinate system given a pose hy-
pothesis x; s(·, ·) is a cross-correlation operation between two images.
Please refer to Chapter 2.4.3 for more details.

learning rich representations for robot state estimation 47

Traffic Sign Observation Model. This model encodes the con-
sistency between perceived online traffic signs and the map. Specifi-
cally, we run an image-based semantic segmentation algorithm that
performs dense semantic labeling of traffic signs. We adopt the PSP-
net structure (Zhao et al. 2017) to our task, which was state-of-the-art
at the time of publication. The encoder architecture is a ResNet50
backbone, and the decoder is a pyramid spatial pooling network. Two
additional convolutional layers are added in the decoder stage to fur-
ther boost performance. We train the model jointly with an instance
segmentation loss following (Bai and Urtasun 2017). Fig. 3.4 depicts
examples of the network input and output. The estimated image-
based traffic sign probabilities are converted onto the overhead view
to form our online traffic sign probability map. This is achieved by
associating each LiDAR with a pixel in the image by projection. We
then read the softmax probability of the pixel’s segmentation as our
estimate. Only high-confidence traffic sign pixels are unprojected to
3D and rasterized in BEV. Given a pose proposal x, we define the
sign-matching probability analogously to the lane-matching one as

PSign ∝ s (π (fSign(Zt;wSign), x) , T) , (3.4)

where fSign is the sign segmentation network and wSign are the net-
works parameters. Both the perceived signs and the map to which
they are matched are encoded as pixel-wise occupancy probabilities.

3.3.2 Inference and Learning

Inference. Inference is performed in real-time following the frame-
work previously covered in Chapter 2.4.4.

Method GPS
std

Dyn Angle
std

Dyn Lat
std

Dyn Lon
std

Argmax
Temp

Lane
Temp

Sign
Temp

Lane - 1.0 2.0 5.0 1.0 1.0 -
Lane+GPS 20.0 1.0 2.0 5.0 1.0 1.0 -
Lane+Sign - 1.0 2.0 5.0 1.0 1.0 2.5
All 20.0 1.0 2.0 5.0 1.0 1.0 2.5

Figure 3.5: Best hyperparameters for
each methodLearning. The lane detection and the traffic sign segmentation

networks are trained separately through back-propagation using
ground-truth annotated data. The lane detection is trained with a
regression loss that measures the ℓ2 distance between the predicted
inverse truncated distance transform and the ground-truth one (Bai et
al. 2018). The semantic segmentation network is trained with cross-
entropy (Bai and Urtasun 2017). Hyperparameters for the Bayes filter

learning rich representations for robot state estimation 48

(e.g., σ2
GPS, softmax temperature α, etc.) are searched through cross-

validation.

3.4 Experimental Evaluation

We validate the effectiveness of our localization system on a highway
dataset of 312 km. We evaluate our model in terms of its localization
accuracy and runtime.

3.4.1 Dataset

Our goal is to perform fine-grained localization on highways. Unfor-
tunately, at the time of publication, there were no publicly available
datasets which provided ground truth localization at the centimeter-
level precision required for safe autonomous driving. We therefore
collected a dataset of highways by driving over 300km in North Amer-
ica at different times of the year, covering over 100km of roads. The
dataset encompasses 64-beam LiDAR sweeps and images from a front-
facing global shutter camera with a resolution of 1900 × 1280, both
captured at 10Hz, as well as IMU and GPS sensory data. The dataset
also includes a lane graph map. The extrinsic calibration between
the camera and LiDAR is conducted using a set of calibration targets
(Hartley and Zisserman 2003). The ground truth 3D localization is
estimated by a high-precision ICP-based offline Graph-SLAM using
high-definition pre-scanned scene geometry. Fig. 3.4 shows a sample
from our dataset together with the inferred and ground truth lane
graphs.

Our dataset is partitioned into ‘snippets,’ each consisting of roughly
2km of driving. The training, validation, and test splits are conducted
at the snippet level, where training snippets are used for map building
and training the lane detection network, and validation snippets are
used for hyperparameter tuning. The test snippets are used to com-
pute the final metrics. An additional 5,000 images are annotated with
pixel-wise traffic sign labels which are used to train the sign segmenta-
tion network.

3.4.2 Implementation Details

Network Training. To train the lane detection network, we uni-
formly sample 50K frames from the training region based on their
geographic coordinates. The ground truth can be generated automati-
cally, given the vehicle pose and the lane graph. We use a mini-batch
size of 16 and employ Adam (Kingma and Ba 2015) as the optimizer.
We set the learning rate to 10−4. The network was trained entirely
from scratch with Gaussian initialization and converged roughly after

learning rich representations for robot state estimation 49

Method
Properties Travelling Dist = 2km

Longitudinal Error (m) Lateral Error (m)

Lane GPS Sign Median 95% 99% Median 95% 99%

Lane yes no no 13.45 37.86 51.59 0.20 1.08 1.59
Lane+GPS yes yes no 1.53 5.95 6.27 0.06 0.24 0.43
Lane+Sign yes no yes 6.23 31.98 51.70 0.10 0.85 1.41

All yes yes yes 1.12 3.55 5.92 0.05 0.18 0.23
Table 3.1: Ablation study on the
impact of each component of our
lightweight localization system.ten epochs. We visualize some results in Fig. 3.4.

We train our traffic sign segmentation network separately over four
GPUs with a total mini-batch size of 8. Synchronized batch normal-
ization is utilized for multi-GPU batch normalization. The learning
rate is set to be 10−4 and the network is trained from scratch. The
backbone of the model is fine-tuned from a DeepLab v2 network pre-
trained over the Pascal VOC dataset.

Hyper-parameter Search. We choose the hyperparameters
through grid search over a mini-validation dataset consists of 20 snip-
pets of 2km driving. The hyperparameters include the temperatures
of the final pose soft-argmax, the lane probability softmax, and the
sign probability softmax, as well as the observation noise parameters
for GPS and the dynamics. The best configuration is chosen by the
failure rate metric. In the context of hyperparameter search, the fail-
ure rate is a snippet-level metric which counts a test snippet as failed
if the total error becomes greater than 1m at any point. We therefore
picked the hyperparameter configuration which minimized this met-
ric on our validation set, and kept it fixed at test time. As noted in
Chapter 2.4.2, we restrict our search range to a small area centered
at the dead reckoning pose and neglect the probability outside the
region. We notice in practice that thanks to the consistent presence
of the lanes in self-driving scenarios, there is less uncertainty along
the lateral direction than along the longitudinal. The presence of traf-
fic signs helps reduce uncertainty along the longitudinal direction,
but signs could be as sparse as every 1km, during which INS drift
could be as large as 7 meters. Based on this observation and with the
potential drift in mind, we choose a very conservative search range
B = Bx × By × Bθ = [−0.75m, 0.75m]× [−7.5m, 7.5m]× [−2◦, 2◦] at a
spatial resolution of 5cm and an angular resolution of 1◦.

We performed an exhaustive grid search to find the set of hyperpa-
rameters that minimize the failure rate in the mini-validation set. The
search grid consisted of soft-argmax temperature from the set {1., 8.},
lane temperature from {.5, 1., 1.5}, sign temperature from {.5, 1., 1.5},

learning rich representations for robot state estimation 50

GPS observation’s standard deviation at {0, 10, 20} meters, dynamics
observation’s standard deviation from {1., 2.} degrees, and dynamics
observation’s longitudinal standard deviation from {5., 10.} meters.
This describes a grid of 216 points for which metrics were computed
exhaustively. The best set of hyperparameters can be seen in Tab. 3.5.

3.4.3 Localization

Metrics. We adopt several key metrics to measure the localization
performance of the algorithms evaluated in this Section.

Method Name Smoothness

Mean 95% 99% Max

Dynamics 0.2 0.4 0.6 1.2
GPS 0.1 0.2 0.3 8.5
INS 0.1 0.1 0.2 3.7
Ours 0.1 0.2 0.3 0.9

Table 3.2: Quantitative results for
lightweight localization using smooth-
ness metrics.

In order to safely drive from a certain point to another without any
human intervention, an autonomous vehicle must be aware of where
it is w.r.t. the map. Lateral error and longitudinal error have differ-
ent meanings for self-driving since a small lateral error could result in
localizing in the wrong lane, while ambiguities about the longitudinal
position of the vehicle are more tolerable. As localization is the first
stage in self-driving pipeline, it is critical that it stays robust enough
with a minimal failure rate; therefore, understanding worst-case per-
formance is critical.

Moreover, localization results should reflect the vehicle dynamics as
well, which ensures the smoothness of decision making since sudden
jumps in localization might cause downstream components to fail. To
this end, we also measure the prediction smoothness of our methods.
We define smoothness as the difference between the temporal gradient
of the ground truth pose and that of the predicted pose. We estimate
the gradients using first-order finite differences, i.e., by simply taking
the differences between poses at times (t) and (t − 1). As such, we
define smoothness as

s =
1

T

T∑
t=1

∥∥(x∗
t − x∗

t−1)− (xGT
t − xGT

t−1)
∥∥2 . (3.5)

Baselines. We compare our results with two baselines: dynamics
and dynamics+GPS. The first baseline builds on top of the dynamics
of the vehicle. It takes as input the IMU data and wheel odometry,
and use the measurements to extrapolate the vehicle’s motion. The
second baseline employs histogram filters to fuse information between

learning rich representations for robot state estimation 51

Figure 3.6: Localization Error as a
function of travel distance.

IMU readings and GPS sensory input, which combines motion and
absolute position cues.

Methods
Longitudinal Error (m) Lateral Error (m)

Median 95% 99% Median 95% 99%

Dynamics 24.85 128.21 310.50 114.46 779.33 784.22
GPS 1.16 5.78 6.76 1.25 8.56 9.44
INS 1.59 6.89 13.62 2.34 11.02 42.34
Ours 1.12 3.55 5.92 0.05 0.18 0.23

Table 3.3: Quantitative results on
localization accuracy. Here, ‘Ours’
refers to the model proposed in
this paper using dynamics, GPS,
lanes, and signs, in a probabilistic
framework.

Quantitative Analysis. As shown in Tables 3.2 and 3.3, our
method significantly outperforms the baselines across all metrics. To
be more specific, our model has a median longitudinal error of 1.12m
and a median lateral error of 0.05m; both are much smaller than other
competing methods, with lateral error one order of magnitude lower.
Our method greatly improves performance in worst-case scenarios in
terms of longitudinal error, lateral error, and smoothness.

Error vs. Travel Distance. Fig. 3.6 depicts the localization
error as a function of travel distance. We can see that our approach
is relatively stable across travel distance without catastrophic failures.
Particularly, the median lateral error is maintained to be around 5cm
with a worst-case of around 23cm.

Qualitative Results. We show the localization results of our
system as well as those of the baselines in Fig. 3.3. Through lane
observations, our model is able to consistently achieve centimeter-
level lateral localization accuracy. When signs are visible, the traffic
sign model helps push the prediction toward the location where the
observation and map have agreement, bringing the pose estimate to

learning rich representations for robot state estimation 52

Inference

Travelling Dist = 2km Smoothness
Longitudinal Error (m) Lateral Error (m)

Median 95% 99% Median 95% 99% Mean 95% 99% Max

Deterministic 1.29 3.65 5.16 0.08 0.26 0.50 0.11 0.19 1.78 5.27
Probabilistic 1.12 3.55 5.92 0.05 0.18 0.23 0.07 0.19 0.24 0.98

Table 3.4: Ablation studies on infer-
ence settings with full observations
(Lane+GPS+Sign)the correct longitudinal position. In contrast, GPS tends to produce

noisy results, but helps substantially improve worst-case performance.
Runtime Analysis. To further demonstrate that our localization

system is of practical usage, we benchmark the runtime of each com-
ponent in the model during inference using an NVIDIA GTX 1080
GPU. A single step of our inference takes 153ms in total on average,
with 32ms on lane detection, 110ms on semantic segmentation and
11ms on matching, which is roughly 7 FPS. We note that the real-
time performance is made possible largely by the FFT convolutions
discussed in Chapter 2.4.4.

Map Storage Analysis. We compare the size of our HD map
against other commonly used representations: LiDAR intensity map
and 3D point cloud map. For a fair comparison, we store all data
losslessly and measure the storage requirements. While the LiDAR
intensity and 3D point cloud maps consume 177 MiB/km2 and 1,447
MiB/km2, respectively, our HD map only requires 0.55 MiB per
square kilometer. This is only 0.3% of the size of the LiDAR intensity
map and 0.03% of that of a 3D point cloud map.

Ablation Study. To better understand the contribution of each
component of our model, we respectively compute the longitudinal
and lateral error under diverse settings. As shown in Tab. 3.1, each
term (GPS, lane, sign) has a positive contribution to the localization
performance. Specifically, the lane observation model greatly increases
lateral accuracy, while sign observations increase longitudinal accuracy.
We also compare our probabilistic histogram filter formulation with
a deterministic model. Compared to our histogram filter approach,
the non-probabilistic one performs a weighted average between each
observation without carrying over the uncertainty of the previous step.
As shown in Tab. 3.4, by combining all the observation models, the
non-probabilistic model can achieve reasonable performance but still
remains less accurate than the probabilistic formulation. Moreover,
due to the fact that no uncertainty history is carried over, prediction
smoothness over time is not guaranteed.

53

3.5 Conclusion

In this chapter we proposed a system capable of robustly localizing an
autonomous vehicle against a map, while requiring roughly three or-
ders of magnitude less storage than traditional methods. This has the
potential to substantially improve the scalability of self-driving tech-
nologies by reducing storage costs, while also enabling map updates to
be delivered to vehicles in real-time over inexpensive mobile networks.

We approached the task by identifying two sets of complementary
cues capable of disambiguating the lateral and longitudinal position of
the vehicle: lane boundaries and traffic signs. We integrated these cues
into a pipeline alongside GPS, IMU, and wheel encoders and showed
that the system is able to run in real-time at roughly 7 Hz on a single
GPU. We demonstrated the efficacy of our method on a large-scale
highway dataset consisting of over 300km of driving, showing that it
can achieve the localization accuracy requirements of self-driving cars
while using much less storage.

However, the accuracy of this method still relies on perception
models trained without localization in mind. In the absence of cues,
this approach can fail. By training representations specifically for
the task of localization, we can simplify the training procedure while
substantially increasing the system’s robustness. This is the subject of
the following few chapters.

learning rich representations for robot state estimation 54

4
LiDAR Matching with Deep Representations

4.1 Introduction

Lightweight maps like those leveraged previously in Chapter 3 draw
attention to developing affordable localization efforts. While only re-
quiring small amounts of storage, they encode both the road network’s
topological structure and its semantics. The primary advantage of lo-
calizing with lightweight maps is the fact that this map information is
typically already present onboard due to its use in tasks like routing
and motion planning.

However, as highlighted in Chapter 3.4, these methods still struggle
to achieve centimeter-level accuracy. Furthermore, such localizers
rely on the presence of the human-selected cues in the map, and their
accurate online detection. This adds another layer of complexity,
limiting the localizer’s applicability to environments where semantic
maps may be unavailable or the cues difficult to perceive.

In contrast, localizers which directly leverage the online LiDAR
data and map imagery can bypass these limitations. While techniques
from this area have been shown to work well in practice (Levinson,
Montemerlo, and Thrun 2007; Levinson and Thrun 2010; Wolcott
and Eustice 2015), outperforming methods based on geometric reg-
istration (Yoneda et al. 2014), as well as GNSS, visual localization,
and lightweight localization, a few notable limitations remain. The
approaches we will cover in this and the next chapters aim to address
them.

First, LiDAR intensity readings are difficult to calibrate, especially
when mapping and localization use different LiDAR units, possibly
from different manufacturers. In order for localization to scale to large
maps and to avoid having to re-build maps when new vehicles are
deployed, intensity-based localization must be agnostic to calibration
issues.

Second, dense LiDAR intensity maps, often stored at resolutions
as high as 5cm/px can be demanding in terms of transmission and
storage, limiting their deployment at scale.

This chapter proposes to learn to extract representations which are
optimal for localization directly from the map imagery and the online
observations. We propose to learn a BEV affinity function between
observations and map data optimized specifically for localization qual-

learning rich representations for robot state estimation 55

ity. This bypasses the need to explicitly extract semantic cues while
avoiding the challenges typically associated with LiDAR intensity
calibration. Later, in Chapter 5, we discuss ways of tackling the sec-
ond limitation by integrating a data-driven task-specific compression
scheme capable of reducing storage requirements for localization maps
by several orders of magnitude.

We refer the reader Fig. 4.1 for a sample fragment of the maps used
by our system.

Figure 4.1: LiDAR intensity map.
An example of a bird’s-eye view
(BEV) LiDAR intensity map used by
our system. It encodes rich informa-
tion on the environment’s appearance
and its geometric structure. The or-
ange square highlights an example of
geometric structure captured by the
BEV images—the corner of a build-
ing, while the green one highlights
an example of intensity structure—
painted lane lines and crosswalks.

4.2 Learning LiDAR Representations for Localization

In this section, we discuss our LiDAR intensity localization system.
Following the same framework as in the previous chapter, we formu-
late localization as a deep recursive Bayesian estimation problem and
discuss each probabilistic term. We then present our real-time infer-
ence algorithm and describe how our model is trained.

LiDAR Matching Energy. This term measures the probability
of the current LiDAR observation at a potential vehicle pose x. It
projects the map centered at x and the LiDAR observation into a
shared space and measures their affinity using cross-correlation. This
term is expressed in BEV, taking the place of the PBEV term discussed
in Eq. (2.10).

We can express deep LiDAR matching as an instantiation of this
equation by passing a rasterized bird’s-eye view image of the current
LiDAR as Zt, and implementing fo and fm as fully convolutional
neural networks.

Network Architecture. Our embedding functions fo(· ;wo) and
fm(· ;wm) are customized fully convolutional neural networks. The
first network fo(· ;wo) takes as input the bird’s-eye view (BEV) ras-
terized image of the k most recent LiDAR sweeps (compensated by
ego-motion) and produces a dense representation at the same reso-
lution as the input. The second network fm(· ;wm) takes as input a
section of the LiDAR intensity map and produces an embedding with
the same number of channels as the first one, and the spatial resolu-
tion of the map.

learning rich representations for robot state estimation 56

Figure 4.2: Deep LiDAR localizer
architecture. The full architecture
of the proposed localizer, which
incorporates our learned LiDAR
matching component and outputs a
3-DoF pose at each time step. The
top Deep Net is fm, while the bottom
represents fo.

(a) Online LiDAR image. (b) Online embedding. (c) Intensity map. (d) Map embedding.

Figure 4.3: One example of the
learned input and map embed-
dings. The neural networks learn
to focus on reliable cues while sup-
pressing unreliable ones and dynamic
objects.

We experiment with architectures based on the patch-matching
architecture used by (W. Luo, Schwing, and Urtasun 2016) and with
LinkNet by (Chaurasia and Culurciello 2017).

We use instance normalization (Ulyanov, Vedaldi, and Lempitsky
2017) after each convolutional layer instead of batch normalization
due to its ability to reduce instance-specific mean and covariance
shift. Our embedding output has the same resolution as the input
image, with a (potentially) multi-dimensional embedding per pixel.
The channel dimension for the output embeddings is chosen based on
the trade-off between performance and runtime. We refer the reader
to Fig. 4.3 for an illustration of a single-channel embedding. Unless
otherwise stated, all our experiments use single-channel embeddings
for both online LiDAR and the maps, as we found them to be optimal
empirically.

By leveraging the now-familiar 3-DoF matching described in Chap-
ter 2.4, we only need to run the embedding networks once, rotate the
computed online LiDAR embedding nθ times, and convolve each ro-
tation with the map embedding to get the probability for all the pose
hypotheses in the form of a score map S. Our solution is, therefore,
globally optimal over our discretized search space including both ro-
tation and translation. In practice, the rotation of our online LiDAR
embedding is implemented using a spatial transformer module (Jader-
berg et al. 2015), and generating all rotations takes 5ms in total (we

learning rich representations for robot state estimation 57

use nθ = 5 in all our experiments). A point estimate of the posterior
pose can be estimated with the soft-argmax procedure described in
Chapter 2.4.4.

4.2.1 Learning

The proposed LiDAR matching system is end-to-end differentiable,
enabling us to learn all parameters jointly using backpropagation. We
find that a simple cross-entropy loss is sufficient to train the system,
without requiring additional, potentially expensive terms, such as
a reconstruction loss. We define the cross-entropy loss between the
ground-truth position and the inferred score map as

LMatch(y, y(GT)) =
∑

i∈{0,1}

y(GT) log(yi) (4.1)

where the y corresponds to the network’s prediction, or PLiDAR (post-
softmax) from the above diagram. y(GT) represents the one-hot en-
coding of the ground truth offset between the online LiDAR and the
intensity map. It therefore consists of all zeroes, except for a single
‘one’ at the location of the correct (x, y, yaw) offset1. 1 We also experimented with an ℓ2

loss between the soft-argmax output
of PLiDAR and the ground truth
offset triplet, e.g., as proposed by the
authors of GC-Net (Kendall et al.
2017), but we found cross-entropy to
consistently work better in practice.
We also tried various forms of ground
truth label smoothing, but they did
not improve results over the one-hot
encoding either.

4.3 Experimental Results

Dataset. We collected a new dataset comprising over 4,000km of
driving through a variety of urban and highway environments in mul-
tiple cities/states in North America, collected with two types of Li-
DAR sensors. According to the scenarios, we split our dataset into
Highway-LidarA and Misc-LidarB, where Highway-LidarA contains
over 400 sequences for a total of over 3,000km of driving for training
and validation. We select a representative and challenging subset of
282km of driving for testing, ensuring that there is no geographic over-
lap between the splits. All these sequences are collected by a LiDAR
type A. Misc-LidarB contains 79 sequences with 200km of driving over
a mix of highway and city collected by a different LiDAR type B in a
different state. LiDARs A and B differ substantially in their intensity
output profiles, as shown in Fig. 4.4.

Lidar Type BLidar Type A Figure 4.4: LiDAR Sensor Trans-
fer. A comparison between the two
LiDAR sensors. Left: the different
intensity profiles of their sweeps over
the same location; right: the color-
mapped intensity images.

Experimental Setup. We randomly extracted 230k training sam-
ples from the training sequences. We aggregate the five most recent

learning rich representations for robot state estimation 58

Error vs. Traveling Dist Lateral Histogram Longitudinal Histogram

Figure 4.5: Quantitative Analy-
sis. From left to right: localization
error vs traveling distance; lateral
error histogram per each timestamp;
longitudinal histogram per each step.

0.0 0.2 0.4 0.6 0.8 1.0
Lateral Error (Meters)

50

60

70

80

90

100

Pe
rc

en
til

e
(%

)

ICP: 95% Error: 10.9 cm
Ours: 95% Error: 15.5 cm

0.0 0.2 0.4 0.6 0.8 1.0
Longitudinal Error (Meters)

50

60

70

80

90

100

Pe
rc

en
til

e
(%

)

ICP: 95% Error: 119.5 cm
Ours: 95% Error: 16.1 cm

0.0 0.2 0.4 0.6 0.8 1.0
Overall Error (Meters)

50

60

70

80

90

100

Pe
rc

en
til

e
(%

)

ICP: 95% Error: 127.2 cm
Ours: 95% Error: 20.6 cm

Lateral Longitudinal Total Translational
Figure 4.6: Cumulative error
curve for the deep LiDAR local-
izer on Highway-LidarA. From left
to right: lateral, longitudinal, total
translational error.

online LiDAR sweeps for each training sample to generate the BEV
intensity image using vehicle dynamics, corresponding to 0.5 seconds
of LiDAR data. In such a short time, drift is negligible. Our ground-
truth poses are acquired through an expensive high-precision offline
matching procedure with up to several centimeters of uncertainty. We
rasterize the aggregated LiDAR points to create a LiDAR intensity
image. Both the online intensity image and the intensity map are dis-
cretized at a spatial resolution of 5cm covering a 30m × 24m region.
During matching, we use the same spatial resolution, plus a rotational
resolution of 0.5°, with a total search range of 1m × 1m × 2.5° around
the dead reckoning pose2. We report the median error as well as the 2 Recall that in Chapter 3, we used an

uneven search region which was much
larger in the longitudinal (along-road)
direction. This was because that
method struggled to constrain the
robot’s state longitudinally due to
the sparsity of cues that constrain
this dimension (signs), especially
in highway environments. As the
current method can infer cues from
the LiDAR map itself, it no longer
has this limitation. We can, therefore,
use equal search ranges laterally and
longitudinally.

failure rate. The median error reflects how accurate the localization
is in the majority of cases, while the failure rates reflect the worst-
case performance. In particular, we define “failure” if at least one
frame with localization error over 1m exists. In addition to these per-
sequence metrics, we also plot the per-frame cumulative localization
error curve in Fig. 4.6.

Implementation Details. We manually chose the following hy-
perparameters through validation, namely the motion model variance
Σ = diag([3.0, 3.0, 3.0]), the GPS observation variance σ2

GPS = 10.0,
and the temperature constant α = 2.0.

We implement our full inference algorithm in PyTorch 0.4. The
networks are trained using Adam over four NVIDIA 1080Ti GPUs,

learning rich representations for robot state estimation 59

with an initial learning rate of 0.001.
We observe that incorporating the rotation component of the

matcher in the training pipeline did not meaningfully improve match-
ing performance. However, the added computation in the forward and
backward passes slowed down training substantially. As a result, we
trained our final models without matching in the yaw dimension. Even
though we only trained using 2-DoF matching, the embeddings were
able to generalize well to 3-DoF matching.

It is critical to cover all possible 3-DoF offsets within the method’s
(x, y, yaw) search range. Since ground truth poses are available, each
dataset sample encompasses perfectly aligned online and map images.
However, in this case, the ground truth offset would always correspond
to (0, 0, 0), i.e., the central pixel of the 3D score volume. We observed
that this immediately caused overfitting, making the resulting embed-
dings useless.

To address this, at train time, we always perturb each sample with
a random transform from our pre-defined search range. Each random
transform can be one-hot encoded, and the ability to “jitter” the on-
line LiDAR like this acts like data augmentation, producing many
training samples from each ground-truth-aligned (map, LiDAR) pair.

Ablation studies. We also conduct two ablation studies. Our first
ablation verifies whether the motion prior defined in Eq. (2.7) is help-
ful. We evaluate the algorithm with and without this term, denoted
as Motion in Fig. 4.1. Our second ablation, also covered in this table,
evaluates whether a probabilistic MLE proposed in Eq. (2.12) helps
improve performance, denoted as Prob. The non-probabilistic option is
achieved by changing the soft-argmax in Eq. (2.12) to a hard one.

Comparison to Other Methods. We compare our algorithm
against several baselines. The raw matching consists of performing the
matching-based localization in a manner similar to our method but
only using the raw intensity BEV online and map images, instead of
the learned embeddings. The ICP baseline conducts point-to-plane
ICP between the raw 3D LiDAR points and the 3D pre-scanned lo-
calization map at 10Hz. It is initialized in a manner similar to our
method, using the previously estimated location plus the vehicle dy-
namics. This ensures good initialization quality, as required by algo-
rithms from the ICP family.

Localization Performance. As shown in Tab. 4.1, our approach
achieves the best performance among all the competing algorithms
in terms of failure rate. Both probabilistic inference and the use of
a motion prior further improve the robustness of our method. Our
ICP baseline is competitive in terms of median error, especially along
the lateral direction, but the failure rate is significantly higher. It is
also more computationally demanding and requires 3D maps. Both

learning rich representations for robot state estimation 60

Median Error (cm) Failure Rate (%)
Method Motion Prob Lat Lon Total ≤ 100m ≤ 500m ≤ End

Dynamics ✓ 439.21 863.68 1216.01 0.46 98.14 100.00
Raw LiDAR ✓ 1245.13 590.43 1514.42 1.84 81.02 92.49
ICP ✓ 1.52 5.04 5.44 3.50 5.03 7.14
Ours (LinkNet) 3.87 4.99 7.76 0.35 0.35 0.72
Ours (LinkNet) ✓ 3.81 4.53 7.18 1.06 1.06 1.44
Ours (LinkNet) ✓ ✓ 3.00 4.33 6.47 0.00 0.00 0.00

Table 4.1: Localization Perfor-
mance on the Highway-LidarA
dataset. Please note that the num-
bers in this thesis and the arXiv ver-
sion of the paper are more up-to-date
than those in the CoRL proceedings
as they incorporate a small bugfix.

dynamics-only and raw intensity matching result in substantial drift.
Moreover, we have observed that deeper architectures and proba-
bilistic inference are generally helpful. Fig. 4.5 shows the localization
error as a function of the travel distance aggregated across all se-
quences from the Highway-LidarA test set. The solid line denotes the
median, and the shaded region denotes the 95% area, together with
the distribution of lateral and longitudinal errors per frame. Fig. 4.6
compares our approach to ICP in terms of cumulative errors with the
95th percentile error reported. From this, we can see that our method
significantly outperforms ICP in terms of worst-case behavior.

Domain Shift. In order to show that our approach generalizes
well across LiDAR sensors, we conduct a second experiment, where
we train our network on Highway-LidarA, a dataset collected using
LiDAR A, which consists purely of highway data, and test on the test
set of Misc-LidarB, which is a dataset encompassing both highway and
city driving, collected in a different state with a different LiDAR (type
B). In order to better highlight the difference, in Fig. 4.4 we show the
intensity value distributions of the two LiDAR types and their raw
intensity images, collected at the same physical location3. Tab. 4.2 3 The LiDAR A sample is not part

of the dataset, as Highway-LidarA
is completely geographically disjoint
from Misc-LidarB.

showcases the results of this experiment. The table highlights that our
neural network can generalize both across LiDAR models and across
environment types.

Runtime Analysis. We conduct a runtime analysis over both em-
bedding networks and matching. Our LinkNet-based embedding net-
works take less than 10ms each for a forward pass over the online and
map images, respectively. We also compare the cuDNN implementa-
tion of FFT-conv and standard spatial convolution. FFT reduces the
run time of the matching by an order of magnitude, bringing it down
from 27 ms to 1.4 ms for a single-channel embedding. This enables
us to run the localization algorithm at 15 Hz, achieving our real-time
operation goal.

Emergent Behavior. By optimizing localization performance,
we observed emergent effects in the neural networks used to compute

learning rich representations for robot state estimation 61

Figure 4.7: Emergent Behavior in
Deep LiDAR Matching. We notice
that when translating the raw LiDAR
(left) into the deep embedding (right),
the neural network learns to remove
objects that are not reliable enough
for localization, such as cars, despite
never being explicitly trained to do so

Median Error (cm) Failure Rate (%)
Method Motion Prob Lat Lon Total ≤ 100m ≤ 500m ≤ End

Dynamics Only Yes No 195.73 322.31 468.53 6.13 68.66 84.26
ICP Yes No 2.57 15.29 16.42 0.46 28.43 37.53

Ours (Transfer) Yes No 6.95 6.38 11.73 0.00 0.71 1.95

Table 4.2: Cross-dataset general-
ization. Localization Performance
on Misc-LidarB trained on Highway-
LidarA.

the deep embeddings. We can see an example of this effect in Fig. 4.7,
which highlights how the fully convolutional online LiDAR embedding
learns to remove distractors not relevant to the end task, such as
other cars. Cars act as distractors even when parked, as they are not
consistently reliable over long periods. In a sense, the embedding
networks learn to become car “anti-detectors” despite never seeing a
perception training label. This highlights the power of simple tasks
such as LiDAR matching for applications like feature pre-training.
Recent research has drawn similar parallels between perception and
neural rendering (H. Yang et al. 2024).

4.4 Conclusion

In this chapter, we proposed an effective, real-time, and calibration-
agnostic LiDAR localization method for self-driving cars. Our method
projects the online LiDAR sweeps and the intensity map into a joint
embedding space. Localization is conducted through efficient convo-
lutional matching between the embeddings. This approach allows our
full system to operate in real-time at 15Hz while achieving centimeter-
level accuracy without intensity calibration. The method also gener-
alizes well to different LiDAR types without the need to re-train. The
experiments illustrate the performance of the proposed approach over
two comprehensive test sets covering over 500 km of driving in diverse
conditions.

Nevertheless, in spite of its robustness, the proposed approach
still relies on dense intensity map imagery to localize. The storage

learning rich representations for robot state estimation 62

requirements for these maps can snowball as the operational domain of
a robot grows to city scale and beyond. In the next chapter, we tackle
this challenge by extending the proposed approach to incorporate
optimizing map compressibility in its learning objective.

63

5
Task-Specific Map Compression

5.1 Overviews and Motivation

As discussed in the previous chapter, self-driving vehicles usually
employ LiDAR-based localization systems to precisely localize within
pre-built maps and leverage the information encoded within.

LiDAR localizers rely on the existence of a dense HD map, which
contains point clouds (Wolcott and Eustice 2014; Yoneda et al. 2014)
or the LiDAR intensity imagery described in Chapter 4 and in papers
like (Levinson, Montemerlo, and Thrun 2007; Levinson and Thrun
2010; Wolcott and Eustice 2015). One of the main difficulties in scal-
ing current localization systems to large environments is the storage
required for dense HD maps. For instance, storing a LiDAR intensity
map as a 16-bit PNG file would require roughly 900 GB for a city such
as Los Angeles and over 168 TB for the entire United States1. 1 Based on information from the US

Bureau of Transportation Statistics,
assuming that it takes approximately
4 MB to store a 150 m road segment
as a 16-bit PNG single-channel image
(https://www.bts.gov).

Storing this information onboard the vehicle is infeasible for scala-
bility past a single city2. Streaming the HD map data on the go makes

2 While 900 GB is not impossible for
modern SDVs, the high-endurance
flash storage typically used by such
robots is high-value real estate: these
drives also need to accommodate
files containing the weights of all
ML models used onboard, as well as
several other map layers. Additionally,
the drives also need to have enough
space left over to log all sensor data
from a day of operations for metrics
and monitoring purposes.

the system dependent on a reliable LTE or 5G connection, which may
not always be available, while also incurring additional subscription
costs. Storage-intensive maps are also time-consuming to deploy and
update, which slows down software development and operations.

To address these challenges, in this chapter, we propose to learn
to compress the map representation such that it is optimal for the lo-
calization task. As a consequence, we can achieve higher compression
rates without loss of localization accuracy and robustness compared
to standard coding schemes which optimize for reconstruction, thus
ignoring the end task. In particular, we leverage a fully convolutional
neural network to learn to binarize the map features, and then com-
press the binarized representation using run-length encoding on top
of Huffman coding. Both the binarization net and its corresponding
decoder are learned end-to-end using a task-specific loss. We demon-
strate the effectiveness of this idea in the context of the LiDAR in-
tensity localization system presented in Chapter 4, and show that it

https://www.bts.gov

learning rich representations for robot state estimation 64

is possible to learn a task-specific compression scheme which reduces
storage requirements by two orders of magnitude over general-purpose
codecs such as WebP without sacrificing performance.

10 2 10 1 100 101

Bits Per Pixel (log scale)

2

3

4

5

6

7

8

9

Lo
ca

liz
at

io
n

Er
ro

r (
cm

)

1.050.58
0.40

0.30 1.030.480.28
0.18

4.940.0112

PNG
WebP
JPG
Ours

Figure 5.1: End failure rate for
localization under different map
compression settings. Lower and
to the left is better. Multiple readings
for WebP and JPG represent differ-
ent quality factors specified during
encoding. The numbers represent the
precise map storage bitrates.

5.2 End-to-End Compressed Localization

5.2.1 Overview

Our approach learns a compressed deep embedding of the map that
can be stored directly onboard, dramatically reducing the require-
ments of state-of-the-art LiDAR intensity-based localization systems.
The compression module can be learned end-to-end, jointly with the
deep LiDAR matching approach presented in Chapter 4.

As discussed in the previous chapter, the LiDAR matching model
encodes the agreement between the current online LiDAR observation
and the map indexed at the hypothesized pose x:

PLiDAR ∝ s (π (fo(I;wo), x) , fm(M;wm)) , (5.1)

where fo(·) and fm(·) are the embedding networks for online LiDAR
sweeps, and for the map, respectively, while π is a rigid transform
that converts the online embedding image to the map coordinates
using the hypothesized pose x; M is the dense LiDAR intensity map
representation, and s is the correlation operator between the online
embedding and map embedding. The computation of this term can be
written as a feed-forward network, as shown in Chapter 4.

learning rich representations for robot state estimation 65

Online embedding module

Matching moduleCompression moduleMap embedding module

Input HD map

Online
LiDAR sweep

Position
score

Map feature

Cross-
correlation

Deep net

Reconstruction
from binary codes...

Online feature Spatial-transformed featuresApply rotations

Deep net

Binarized map

...

Figure 5.2: Joint compression
and LiDAR matching architec-
ture. The proposed approach embeds
a compression module in the map
network and trains it jointly with ev-
erything else. This allows our method
to discard information irrelevant to
LiDAR localization, bringing about
substantial gains in compression
efficiency.

While effective for localization, the dense intensity map used in
Chapter 4 requires a large amount of onboard storage. This prevents
the method from scaling to larger operational domains and higher map
resolutions. To tackle this problem, we introduce a novel learning-to-
compress module that significantly reduces map storage, allowing us to
potentially store maps for an entire continent.

5.2.2 Deep Localization with Map Compression

Unlike previous compression networks aimed at optimizing the recon-
struction error or perceived visual quality, this chapter argues that
optimizing for the task at hand is important for further reducing the
storage requirements. Toward this goal, we extend the architecture
from Chapter 4 and include a compression module responsible for en-
coding the map with binary codes through deep convolutional neural
networks. Importantly, our encoding can be learned end-to-end with
our localizer.

We refer the reader to Fig. 5.2 for an illustration of the overall
architecture of our joint compression and matching network. The net-
work includes three components. First, our embedding module takes
the map M and the online LiDAR sweep I as inputs and computes
a deep embedding representation of both. So far, the step is identical
to computing the embeddings in the previous chapter. A compression
module is then applied over the map embedding layer, which converts
the high-dimensional float-valued deep embedding map to a series
of low-resolution binary images. We use this representation to store
the map in a compact manner at rest and employ a decoding module
to decompress the binary codes back into the real-valued embedding
representation for inference. Finally, following the now-familiar frame-
work introduced in Chapter 2.4.2, we conduct matching between the
reconstructed map embedding and the online embedding. This gives
us a score for each possible transformation. We use softmax to build

learning rich representations for robot state estimation 66

the probability PLiDAR over our localization search space from the raw
matching score. We now describe the modules in more detail.

Embedding Module. The embedding should capture robust yet
discriminative contextual features while preserving pixel-accurate
details for precise matching. Motivated by this fact, we designed this
module to be a fully convolutional encoder-decoder network following
Chapter 4. It has a U-Net architecture (Ronneberger, Fischer, and
Brox 2015), and the encoder consists of four blocks, each of which
has two stride-1 3 × 3 convolutional layers and one stride-2 3 × 3

convolutional layer that down-samples the feature map by a factor
of 2. The number of channels per block are 64, 128, 256, and 512,
respectively. The decoder network has four decoder blocks, each of
which takes the last decoder block’s output and the corresponding
encoder layer feature as input in an additive manner. Each block
contains one 3 × 3 deconvolution layer followed by one stride-1 3 × 3

conv. The final embedding map has the same spatial resolution as the
input and a single channel. In this way, the decoder combines both
high-level contextual information as well as low-level details.

Compression Module. The task-specific map compression mod-
ule is the core contribution of this chapter. The purpose of this mod-
ule is to convert the large-resolution, high-precision embeddings into
low-precision, lower-resolution ones, without losing critical informa-
tion for matching. We employ a fully convolutional encoder-decoder
network to achieve this goal. The output of the encoding module is
passed through a grouped soft-max module with a binarization com-
ponent. The binarization step ensures that the module outputs can be
processed effectively by lossless compression methods such as Huffman
encoding.

The grouped softmax and subsequent binarization operation are
defined as

pj =
exp(fj)∑

k∈Sj
exp(fk)

, bj =

{
1 if pj ≥ 0.5

0 otherwise
, (5.2)

where Sj is the index group that j belongs to, with each group rep-
resenting a non-overlapping subset of the full index set {1, . . . ,K};
f = [f0, . . . , fi, . . .] is the input feature volume3. The benefit of us- 3 Informally, j indexes over the spatial

location. Each group in the softmax
yields a “slice” of the binarized map
shown in Fig. 5.3.

ing grouped-softmax as encoder activation along with the binarizer is
twofold. First, within each group, we have at most one non-zero en-
try. Thus, with the same number of channels, it has better sparsity
than the sigmoid function, increasing the compressibility of the binary
encoding. Second, compared to standard soft-max, it increases the po-
tential capacity since the grouping of indices allows a more structured
encoding. While the component is non-differentiable, backpropagation
is still feasible thanks to the use of a straight-through estimator, which

learning rich representations for robot state estimation 67

we will discuss in detail in Chapter 5.2.3.

 Compression module Binarized map

Group
softmax

Binarize

Run-length
encoding

Huffman
encoding

01100010...01

Binary
decoder

Input feature Decoded feature
NN encoding NN decoding

Straight-through estimator
Inference Only Learning Only

Map storage...

Figure 5.3: Our compression mod-
ule. We obtain gradients for training
with a straight-through estimator.

We only need to store the highly compressed binary map embed-
dings for onboard localization. We process the binarized feature maps
using a two-step lossless binary encoding scheme. Our first step is
a Huffman encoding. The motivation is that the different features
appear in the environment with different frequencies. The Huffman
dictionary is built by the one-hot encoding of the softmax latent prob-
ability p per pixel4. 4 Thus, for a 128-softmax vector, the

dictionary size is 128. Frequency is
computed in a batch manner. For
instance, if the ‘class’ 5 (00000101)
appears 50% of the time we will use a
shorter-length code 0 to encode it.

The second step uses a run-length encoding (RLE) conducted over
the flattened Huffman code map to further reduce the size by making
use of the fact that codes appear consecutively. For instance, 5555558
could be further reduced to 5681. This gives us the final binary code
that we store. Note that both Huffman encoding and run-length en-
coding are lossless. We choose Huffman+RLE due to its efficiency and
effectiveness. Empirically, we also show that this approach reaches
72.5% of the ideal entropy lower bound. While other types of entropy
coding, such as arithmetic coding, exist, they are slower and bring
marginal improvements to compression rates (Wikipedia Contributors
2019).

The decoder module takes the binary code as input. First, it trans-
forms the Huffman+RLE codes back to the binary map, and then
applies a series of deconvolutional blocks to recover the full high-
resolution, high-precision embedding of the map that we use for
matching. Fig. 5.3 illustrates the structure of the compression mod-
ule.

Matching Module. Our matching module follows the previous
two chapters, where a series of spatial transformer networks rotate
the online embedding multiple times at |Θ| different candidate an-
gles. Within each rotation angle, translational search based on inner-
product similarity is equivalent to convolving the map embedding with
the online embedding as kernels. Thus, enumerating all the possible
pose candidates is equivalent to a convolution with |Θ| kernels. Un-
like standard convolutions used in convolutional neural networks, this

learning rich representations for robot state estimation 68

convolution has a very large kernel. We exploit FFT-conv as before
to accelerate our matching modules by an order of magnitude over
traditional, matrix-multiplication-based convolutions on a GPU.

5.2.3 Training

We train LiDAR localization and map compression jointly with a two-
part loss. The first part mirrors the loss used to train the original
compression-less matching system, while the second promotes efficient
compression:

L = LMatch(y, y(GT)) + λ1LCodeLen(p) + λ2LHardBin(p). (5.3)

Here, y is used to denote the final softmax-normalized output proba-
bility, y(GT) is the one-hot encoded ground truth offset, and p is the
embedding after the group-softmax layer described earlier.

LMatch is the original LiDAR localization matching loss described
previously in Eq. (4.1). It is implemented as a simple cross-entropy
loss which encourages the matching score to be the highest at the GT
position while lowering the scores of positions elsewhere:

ℓLoc(y, ygt) =
∑
i

ygt,i log(yi). (5.4)

As before, jittering the ground-truth alignment is important to
avoid overfitting. LCodeLen and LHardBin are described next.

Code Length Loss. Intuitively, we want the codes produced by
our encoder to be as short as possible, in order to maximize storage ef-
ficiency. Given that the output size of our network is fixed in practice,
we instead minimize the entropy of their codes, as proposed in past
deep compression approaches (Toderici et al. 2016).

Producing low-entropy codes makes them easy to compress using
established entropy coding algorithms, such as Huffman Coding or
Arithmetic Coding. This is a direct consequence of Shannon’s Source
Coding Theorem (Shannon 1948), which states that entropy acts
as a lower bound to the optimal code length. We therefore also use
entropy as our surrogate loss, resulting in the following code length
loss, defined over a mini-batch of size B:

LCodeLen(p) = p̄ log p̄, (5.5)

where p̄ = 1
W×H×B

∑
i pi is the mean probability of the probabilistic

code outputs.
Hard Binarization Loss. In order to apply entropy coding on the

codes, they must first be binarized by clamping them to either zero
or one following Eq. (5.2). This operation is not differentiable, and
we use a straight-through estimator (Bengio, Léonard, and Courville

learning rich representations for robot state estimation 69

2013) for training: during the forward pass we do binarize the codes
output by the network, but during the backward phase, we treat the
binarization as an identity function.

This induces a gap between the binary values used by the compres-
sion decoder and those actually output by the encoder.

In order to reduce this gap and reduce the information loss induced
by binarization, we regularize the individual code outputs to be as
close as possible to zero and one. We implement this regularization
with a per-pixel entropy term

LHardBin(p) =
∑
i

pi log pi, (5.6)

where p represents all soft code probability outputs, and i simply sums
over all the code pixels produced by the encoder. We find that this
approximation provides good gradients for the function to be learned.

Efficient Inference. After training the full system, in the of-
fline map encoding stage we use the trained compression network to
compress the map into a binary code to minimize the onboard stor-
age requirements. During onboard inference, the compressed code
is recovered, and the decoder transforms it into the dense HD map
embedding, used for localization.

As in the previous chapters, we integrate the proposed matching
architecture into a histogram filter with a 5cm resolution in the x

and y dimensions. The main difference from the approach in Chap-
ter 2.4.2 is that when computing the BEV term for LiDAR matching
PLiDAR(It | x;w), we first retrieve a local map binary code b. The
feature network computes the LiDAR embedding and then b is passed
through the decoder of the compressor to recover the map embedding
fm(M;wm). After that, the matching score PLiDAR can be computed
efficiently for all hypothesized poses using the now-familiar FFT-conv
operation.

As discussed in Chapter 2.4.2, the GPS and dynamics terms can
be computed efficiently in this setting and fused with the other terms.
Following the previous chapters, once each term has been computed,
the posterior can be obtained with a multiplication followed by re-
normalization. Then, if desired, the point estimate of the pose at the
current time is computed as a soft-argmax aggregation.

5.3 Experimental Results

5.3.1 Datasets

The proposed joint map compression and LiDAR localization system
is evaluated on two datasets: an urban dataset collected in Pittsburgh,

learning rich representations for robot state estimation 70

PA, and the highway dataset from Chapter 4, which is collected in
Pennsylvania and California.

The highway dataset contains over 400 sequences of highway driving
with a total of 3,000 km traveled. It contains a dense bird’s-eye view
LiDAR intensity map stored in lossless PNG format at a resolution of
5cm/px. The self-driving vehicles used to collect the data are outfitted
with a 64-beam LiDAR operating at 10Hz, an IMU, wheel encoders,
and a consumer-grade GPS. We follow the same setting as in the
previous chapter and select 282 km of driving as testing, ensuring that
there is no geographic overlap between the splits.

The urban dataset consists of 15,554 km of driving. It covers di-
verse road structures and challenging scenarios, including various types
of intersections, reversing, and parallel parking, as well as some regions
with poor lane markings and map changes.

The ground truth poses for both datasets are computed offline,
using a high-precision batch optimization leveraging LiDAR, IMU,
and wheel encoder data to localize the vehicle against the map. The
maps are built using multiple passes through the covered areas, using
a solution based on Graph-SLAM (Thrun, Burgard, and Fox 2005).

10 2 10 1 100 101

Bits Per Pixel (log scale)

70

72

74

76

78

To
p-

1c
m

 V
al

id
at

io
n

Ac
cu

ra
cy

 (%
)

1.05
0.58

0.40

0.30

0.18

1.89

1.03
0.68

0.49
0.39

0.28

4.94

0.0098

0.0070
WebP
PNG
JPG
Ours (8x)
Ours (16x)

Figure 5.4: Top-1 Matching Per-
formance vs. Bits per Pixel. The
diagram plots how well we can regis-
ter an observation to the prior map,
as a function of how well the map is
compressed. Higher and more to the
left is better.

5.3.2 Experimental Setup

To our knowledge, at the time of writing, no previous work has in-
tegrated LiDAR intensity localization with deep compression. We
therefore evaluate our work against baselines without compression on

learning rich representations for robot state estimation 71

localization metrics alone, such as those described in Chapter 4, and
measure the performance degradation when using the map compres-
sion module.

Since the intensity map is stored as an image, we compare our
compression to several traditional image compression algorithms such
as JPEG and WebP. For each compression algorithm, we compress the
training and testing map images and train a standard learn-to-localize
matching network as in Chapter 4. We also train a reconstruction-
based compression network (‘ours (recon)’), which shares the same
architecture as our compression module, with the only exception that
it is trained for reconstruction error of the feature map only, not for
matching performance. This is meant to analyze whether the task-
specific compression helps our matching task.

For our proposed method, we adopt two different compression set-
tings by changing the downsampling levels we used for the binary
codes. We evaluate an 8× downsampling model and a 16× downsam-
pling model, where the 16× model has an extra set of downsampling
and upsampling modules before binarization, which leads to more
compression at a small cost in localization accuracy. All the com-
peting algorithms have the same embedding feature network as our
proposed model. Additionally, we performed experiments with reduced
map resolution as an alternative baseline for reducing map storage.

The neural network encoder is a fully convolutional residual net-
work where each scale includes two 3 × 3 standard residual blocks (K.
He et al. 2016) and a stride-2 3 × 3 conv between scales. The chan-
nel counts per scale are 8, 16, 32 and 64 respectively. The decoder is
a fully convolutional network with several transposed convolutional
layers. We use PReLU (K. He et al. 2015) as the activation function.

We train all competing algorithms over 343k and 230k training
samples for the urban and highway datasets respectively. We aggre-
gate five online LiDAR sweeps and rasterize them into a bird’s-eye
view image at 5cm/pixel, to match the map resolution. We build an
intensity image centered at the SDV, covering a range of (−12m, 12m)

laterally, and (−15m, 15m) longitudinally. All networks are trained
on four Nvidia 1080 Ti GPUs using PyTorch. We use the Adam op-
timizer (Kingma and Ba 2015) with an initial learning rate of 10−3.
We observed that training the matching network end-to-end from
scratch works, but is slow to converge. We therefore adopt a stage-
wise training procedure. First, we train the matching network without
compression, as described in Chapter 4.2, then add the compression
module and continue with end-to-end learning.

The proposed system uses LiDAR readings, an inertial measure-
ment unit (IMU), and wheel encoders to localize against a pre-built
LiDAR intensity map. The formulation assumes geometrically cali-

learning rich representations for robot state estimation 72

brated sensors.

Method Median error (cm) Failure rate (%) Bits per pixel
Lat Lon Total ≤ 100m ≤ 500m End

Lossless (PNG) 3.62 4.53 7.06 0.00 0.35 0.71 4.94
WebP-50 3.87 4.87 7.52 0.00 0.71 0.71 1.46
WebP-20 4.03 5.27 8.02 0.00 1.06 8.87 0.91
WebP-10 4.45 7.09 9.79 0.35 9.57 24.37 0.70
WebP-5 4.10 6.40 8.99 0.35 9.57 14.69 0.55
Ours 3.62 4.77 7.19 0.35 0.35 0.71 0.007

Table 5.1: Online localization
performance on the highway
dataset. The proposed learning-
based compression method outper-
forms all traditional, off-the-shelf
approaches, while requiring less stor-
age by several orders of magnitude.

5.3.3 Matching Performance

We begin by evaluating the validation performance of our LiDAR
matcher with and without compression. Next, we perform several
ablation studies to motivate the various design choices in our architec-
ture, after which we integrate the matcher into a localizer and evaluate
its online localization performance and failure rate on our test set.

In order to evaluate the performance of the models in terms of find-
ing the best match in a compressed map, we report the performance of
the competing algorithms under the matching setting.

We conduct matching over a 1 × 1 m search range, after perturbing
the initial position of the vehicle around the GT position. We uni-
formly sample the translational perturbation within this 1 m2 region,
and the angular perturbation between 0 and 5◦. We report top-1 px
and top-9 px as our metrics, representing whether the prediction is
in the same pixel as the GT or within the 3 × 3 px region centered
around the GT, respectively. We report matching accuracy as a func-
tion of bitrate per pixel on the urban dataset in Fig. 5.4. Note that
the proposed algorithm in the 8× setting achieves 76% top-1 px ac-
curacy with a map compression rate of 0.0098 bits per pixel. Both
results are better than all competing algorithms. Furthermore, the
top-9 px accuracy we obtain is on par with the no-compression up-
per bound. Notably, the BPP is around 20-400 times smaller than all
competing algorithms. Under the 16× setting the top-1 px accuracy
is 3% lower but achieves a higher compression rate at 0.007 bits per
pixel.

Ablation Study. We conduct an ablation study over the matching
performance. We first validate whether jointly training the compres-
sion module with our matching task loss helps improve the matching
performance and increase the compression rate. For this, we train
a compression module using only reconstruction loss (without the

learning rich representations for robot state estimation 73

Method BPP Top-9 px Top-1 px

Lossless (PNG) 4.93 97.47% 77.40%
Ours (recon, 8×) 0.0520 97.27% 75.83%
Ours (recon, 16×) 0.0140 96.95% 74.86%
Ours (match, 8×) 0.0098 97.73% 76.05%
Ours (match, 16×) 0.0070 97.25% 73.17%

Table 5.2: Ablation studies on
matching performance. Optimiz-
ing jointly for both map reconstruc-
tion and matching greatly reduces
the storage requirements compared
to lossless codecs such as PNG, but
task-specific supervision leads to a
superior compression rate.

matching task loss). Tab. 5.2 illustrates the results of this ablation.
Jointly training the compression module with the task-specific loss
greatly helps the performance. The 16× downsampled model pushes
the compression rate even further, with a 3% drop on top-1px results.

In the next section, we also analyze whether a lower compression
rate can be achieved by downsampling the map spatially.

5.3.4 Online Localization

Nevertheless, while matching performance is a good proxy metric, in
order to truly validate a LiDAR matcher we must analyze it within
the context of a full localization system. We follow Chapter 4 and
compute the median and worst-case localization error on the test split
as our metrics. Specifically, we report median, p95, and p99 errors in
meters along the lateral and longitudinal directions. We also report
an out-of-range (failure) rate, which represents the percentage of 1
km segments where the method reaches a localization error of 1 m or
higher.

Method Median error
(cm)

Failure rate
(%)

Bits per
pixel

Lat Lon Total ≤100m ≤500m End

Lossless PNG 1.55 2.05 3.09 0.00 1.09 2.44 4.94
JPG-50 3.29 5.60 7.59 0.00 1.09 5.26 1.03
JPG-20 3.77 4.99 7.51 0.00 0.00 1.75 0.48
JPG-10 3.42 5.46 7.54 0.00 1.09 5.26 0.28
JPG-5 4.32 5.48 8.41 0.00 1.09 1.25 0.18
WebP-50 1.62 2.75 3.76 0.00 3.26 3.30 1.05
WebP-20 1.86 2.85 4.10 4.08 8.70 14.63 0.58
WebP-10 1.60 2.26 3.48 0.00 1.09 2.50 0.40
WebP-5 1.65 5.75 6.53 2.04 5.43 13.95 0.30
Ours 1.61 2.26 3.47 0.00 1.09 1.22 0.0083

Table 5.3: Online localization per-
formance on the urban dataset.
Consistent with our analysis at the
matcher level, the proposed approach
exceeds off-the-shelf compression
methods in terms of localization met-
rics, while approaching the “oracle”
performance of lossless representa-
tions.

Tab. 5.3 shows the online localization performance on the urban
dataset. We use ‘method-X’ to denote the quality setting of a given
method, such as JPEG-5. The quality parameter, which takes values
from 0 to 100, is used to trade off storage for reconstruction accuracy.

learning rich representations for robot state estimation 74

A quality of zero means the most aggressive lossy compression possi-
ble, often resulting in heavy distortion, while a quality of 100 is equiv-
alent to, or close to, lossless compression. While most of the baselines
provide reasonable results, our method is better than competing al-
gorithms such as JPEG-5 and WebP-5, which show high failure rates
at extreme compression levels. In terms of worst-case performance,
measured by failure rate, our method is on par with high-quality com-
pression such as WebP-50 and JPEG-50, and a lossless method, while
our bitrate per pixel is 100 times smaller. This is shown in Fig. 5.1,
where we plot the percentage of failures after 1 km against the stor-
age.

Figure 5.5: Qualitative results
from our highway dataset. From
left to right: (1) the original map,
(2) its computed deep embedding,
(3) the compressed embedding, (4)
online LiDAR observation, (5) its
embedding, and (6) the localization
result.

Tab. 5.1 depicts the online localization performance on the high-
way dataset. We can see that traditional off-the-shelf compression
algorithms like WebP have a large performance drop compared to
our compression-based matching. While the method using the recon-
struction loss obtains storage roughly in the same magnitude as our
approach, it suffers a large performance drop. This indicates the im-
portance of the matching loss term for effectively selecting portions
of the map to keep. Meanwhile, our method based on the matching
task loss exhibits no performance drop at half the storage of the pure
reconstruction network, making it more than 400 times smaller than
the lossless compression bitrate.

Tab. 5.4 showcases the ablation study on the urban dataset. We
compare reconstruction-loss-driven compression models against our
matching-loss-driven compression model under various architectures.
The table shows that in terms of online localization error, the com-
pression model trained with a task-specific-driven loss is better than
the reconstruction-driven model, with smaller bitrates and a lower
failure rate.

Additionally, as we will see in Chapter 6, the computational over-
head of localization can be further reduced by sharing features with
other tasks, such as perception.

Comparison to smaller map resolutions. We also performed

learning rich representations for robot state estimation 75

Method Median error
(cm)

Failure rate
(%)

Bits per
pixel

Lat Lon Total ≤100m ≤500m End

Lossless PNG 1.55 2.05 3.09 0.00 1.09 2.44 4.93580
Ours (recon, 8×) 1.59 2.16 3.24 0.00 1.09 1.22 0.02689
Ours (recon, 16×) 1.76 2.48 3.62 0.00 0.00 2.56 0.01155
Ours (match, 8×) 1.61 2.26 3.47 0.00 1.09 1.22 0.00830
Ours (match, 16×) 1.62 2.77 3.84 1.00 2.17 4.26 0.00733

Table 5.4: Ablation studies on the
urban dataset. We compare a map
reconstruction loss with our task-
specific matching loss, each under two
different configurations of our binary
code generator.

Method Res Median Err (cm) Failure Rate (%) Bits per
m2cm/px Lat Lon Total ≤ 100m ≤500m End

PNG 5 1.55 2.05 3.09 0.00 1.09 2.44 1948.55
PNG 10 4.37 6.68 9.50 3.19 3.26 4.00 402.84
PNG 15 15.73 23.66 31.73 10.31 20.65 22.03 173.97
JPG 10 4.51 5.78 8.95 0.00 1.09 10.64 63.42
JPG 15 11.67 18.20 25.14 9.28 13.04 16.28 29.00
Ours 5 1.76 2.48 3.62 0.00 0.00 2.56 2.87

Table 5.5: Localization perfor-
mance on our urban dataset
using maps of reduced spatial
resolution. We used 5cm/px in the
submission. Map storage is measured
in bits/m2 in order to account for dif-
ferent resolutions (bits-per-pixel (bpp)
are no longer meaningful if the area
of a pixel can change). Ours refers to
our 16× downsampling method. JPG
quality is 50.

experiments with reduced map resolutions and off-the-shelf lossy im-
age compression on our urban dataset to investigate the impact on
storage requirements and localization accuracy. We note that unlike
the tables in the paper, here we measure the storage requirements in
bits / m2, in order to account for the different map resolutions. As
shown in Tab. 5.5, in terms of storage requirements, using JPG at
15cm/px does come within roughly an order of magnitude of the stor-
age required by our approach. However, the localization performance
is substantially reduced (16.28% failure rate, as opposed to 2.56% for
our binary coding).

5.3.5 Qualitative Results

Fig. 5.5 shows examples of the deep map embeddings computed by
our system (before and after compression) together with the (uncom-
pressed) online observation embedding and the localization result.

5.3.6 Storage Analysis

We now turn back to the approximate storage requirements described
in this chapter’s introduction, and showcase projected numbers when
compressing all maps using our proposed method in Tab. 5.6. Our
approach can compress a 5cm/px HD map of the entire Los Angeles
county to just 1.5 GB, allowing it to fit in RAM on most current
smartphones. We can also fit the entire USA road network at the same
resolution in just 280 GB.

learning rich representations for robot state estimation 76

Compression LA County Full US

Lossless (PNG) 900 GB 168 TB
WebP 1 32 GB 5.99 TB
Ours (match, 8×) 1.5 GB 0.28 TB

Table 5.6: Estimated map stor-
age requirements using various
compression methods. Estimates
of road network length based on num-
bers provided by the US Bureau of
Transportation Statistics.

5.3.7 Discussion

HD maps can provide a wide range of rich prior knowledge to au-
tonomous vehicles, acting in effect as yet another sensor. However,
the SDV must be able to robustly estimate its pose to leverage this
information.

While deep LiDAR matching can be trained to achieve superior
robustness to non-deep counterparts, its scalability is still limited by
its reliance on dense map imagery. Off-the-shelf image compression
can alleviate some of this cost, but its applicability is limited due to
the misalignment between the localization performance that we are
interested in, and the distortion minimization optimized by traditional
image compression.

In this chapter, we proposed to align these objectives by learning
to compress the map representation such that it is optimal for the
localization task. Our experiments on a state-of-the-art LiDAR local-
izer have shown that it is possible to learn a task-specific compression
scheme which reduces storage requirements by two orders of mag-
nitude compared to general-purpose codecs such as WebP without
sacrificing localization performance. Furthermore, by integrating the
learning of our domain-specific compression network into the training
pipeline of the deep LiDAR matcher, we minimize the computational
and operational overhead.

77

6
Towards Full-System Understanding: Joint Localiza-
tion and Perception

6.1 Overview

It is important to take a step back and consider the purpose of high-
precision localization. At a coarse level, localization is used for high-
level navigation. However, at a finer level, it is used to precisely in-
tegrate detailed information from the map into the decision-making
process of a robotic system.

One common application takes the form of using HD maps1 in SDV 1 We use the same nomenclature as in
Chapter 3 and use the term ‘HD map’
to specifically refer to sparse semantic
information such as lane boundaries,
centerlines, traffic sign locations, etc.

applications. These need to be reasonably aligned with the vehicle’s
local reference frame in order to allow meaningful fusion between
sensor and map data. A key design question thus arises: How good
does this alignment need to be?

In this chapter, we investigate this question in the context of au-
tonomous driving. Specifically, we first explore the impact of local-
ization errors on the entire SDV software stack, culminating with
analyzing motion planner outcomes. Second, we propose a lightweight
addition to a perception and prediction system capable of correcting
pose errors stemming from localization.

In practice, the proposed method could be used either as a fallback
if the primary localizer (e.g., a geometry-based registration localizer
(Yoneda et al. 2014)) fails, or, thanks to its computational efficiency,
the primary localizer in resource-constrained systems.

We focus our attention on bounded, in-domain, localization errors,
for example, those caused by an Iterative-Closest-Point-based local-
izer failing to converge to a solution. We leave complete failures, like
obstructed sensors or system crashes, and out-of-distribution errors,
like failing to localize in a completely different operational domain, as
future work. We refer the reader to recent papers such as (Deschênes
et al. 2021; Ebadi et al. 2023) for discussions on the design of systems
resilient to a broader class of failures.

learning rich representations for robot state estimation 78

6.2 Background

As reviewed in Chapter 2.3, many tasks in robotics can be broken
down into a series of subproblems that are easier to study in isolation,
facilitating the interpretability of system failures (B. Zhou, Krähen-
bühl, and Koltun 2019). In particular, it is common to subdivide the
self-driving problem into five critical subtasks:

1. Localization: placing the car on a high-definition (HD) map with
centimeter-level accuracy.

2. Perception: estimating the number and location of dynamic objects
in the scene.

3. Prediction: forecasting the trajectories and actions that the ob-
served dynamic objects might do in the next few seconds.

4. Motion planning: coming up with a desired trajectory for the ego-
vehicle, and

5. Control: using the actuators (i.e., steering, brakes, throttle, etc.) to
execute the planned motion.

Moreover, it is common to solve the above problems sequentially,
such that the output of one subsystem is passed as input to the next,
and the procedure is repeated iteratively over time. This classical
approach lets researchers focus on well-defined problems that can be
studied independently, and these areas tend to have well-understood
metrics that measure progress on their respective sub-fields. For sim-
plicity, researchers typically study autonomy subproblems assuming
that their inputs are correct. For example, state-of-the-art perception-
prediction (P2) and motion planning (MP) systems often take HD
maps as input, thereby assuming access to accurate online localization.
We focus our attention on this assumption and begin by studying the
effect of localization errors on modern autonomy pipelines. Here, we
observe that localization errors can have severe consequences for P2
and MP systems, resulting in missed detections and prediction errors,
as well as bad planning that leads to larger discrepancies with human
trajectories and increased collision rates. Please refer to Fig. 6.1 for an
example of an autonomy error caused by inaccurate localization.

In contrast to the classical formulation, recent systems have been
designed to perform multiple autonomy tasks jointly. This joint for-
mulation often comes with a shared neural network backbone that
decreases computational and system complexity while still producing
interpretable outputs, making it easier to diagnose system failures.
However, these approaches have so far been limited to jointly per-
forming perception and prediction (P2) (W. Luo, Yang, and Urtasun
2018; Casas, Luo, and Urtasun 2018; Casas, Gulino, Suo, Luo, et al.
2020; Liang et al. 2020), P2 and motion planning (P3) (Zeng et al.

learning rich representations for robot state estimation 79

Figure 6.1: A scenario where a
small localization error results in
a collision. The top row visualizes
the first time step, and the bottom
row visualizes a later time step where
a collision occurs. Black rectangles
represent reality; the pale blue rectan-
gles are forecasted object trajectories.
The SDV is the red rectangle. The
samples predicted by the motion plan-
ner are shown as orange lines. The
three columns visualize different vari-
ants of the same scenario. (Left) The
planned trajectory of the SDV when
there is no localization error. (Middle)
What the SDV “thinks” is happening,
based on its estimated pose that has
an error of (x, y, yaw) = (10 cm, 0
cm, 1.5 deg). (Right) What the SDV
is actually doing when subject to the
pose error; this is the same trajectory
as shown in the middle image, but
rigidly transformed so that the initial
pose agrees with the GT pose. The
collision (red circle) occurs because
the yellow vehicle is not perceived at
t = 0 due to occlusion (by the cyan
vehicle); the localization error then
causes the SDV to go into the lane
of opposite traffic, which results in a
collision.

2019, 2020; Sadat et al. 2020; Y. Hu et al. 2023), semantic segmen-
tation and localization (Radwan, Valada, and Burgard 2018) or road
segmentation and object detection (Teichmann et al. 2018).

In this chapter, and informed by our analysis of the effects of lo-
calization error, we apply the joint design philosophy to the tasks of
localization, perception, and prediction; we refer to this joint setting
as LP2. We design an LP2 system that shares computation between
the tasks, which makes it possible to perform localization with as little
as 2 ms of computational overhead while still producing interpretable
localization and P2 outputs. We evaluate our proposed system on a
large-scale dataset in terms of motion planning metrics, and show that
the proposed approach matches the performance of a traditional sys-
tem with separate localization and perception components, while being
able to correct localization errors online, in addition to being overall
faster and simpler.

6.3 The Effects of Localization Error

Since state-of-the-art perception-prediction (P2) and motion planning
(MP) stacks make extensive use of accurate localization on high-
definition maps (often assuming perfect localization (Casas, Luo,
and Urtasun 2018; Casas, Gulino, Suo, Luo, et al. 2020; M. Bansal,
Krizhevsky, and Ogale 2019; Zeng et al. 2019)), we study the effects of
localization error on a state-of-the-art P2 and MP pipeline. We begin
by describing how these modules work and how they use localization.

Perception-Prediction (P2). P2 models are tasked with per-
ceiving actors and predicting their future trajectories to ensure that

learning rich representations for robot state estimation 80

motion planning has access to safety-critical information about the
scene for the entire planning horizon.

We study the state-of-the-art Implicit Latent Variable Model
(Casas, Gulino, Suo, Luo, et al. 2020) (ILVM), the latest of a fam-
ily of methods that use deep neural networks with voxelized LiDAR
inputs to jointly perform detection and prediction (W. Luo, Yang,
and Urtasun 2018; Casas, Luo, and Urtasun 2018; Zeng et al. 2019).
ILVM encodes the whole scene in a latent random variable and uses
a deterministic decoder to efficiently sample multiple scene-consistent
trajectories for all the actors in the scene. Besides LiDAR, the ILVM
backbone takes as input a multi-channel image which encodes the se-
mantics of the surrounding map2, which the model is expected to use 2 Each channel encodes a particular

kind of map element. One channel
encodes walkways, one encodes lanes,
etc., for a total of 13 layers. Please
refer to (Casas, Gulino, Suo, Luo, et
al. 2020) for more details.

to improve detection and forecasting. While we always process the
LiDAR scans in the vehicle frame, aggregating them using relative
pose information, the alignment between them and the map relies on
an absolute, map-relative pose. Thus, localization error results in a
misalignment between the semantic map and the LiDAR scan.

Motion Planning (MP). Given a map and a set of dynamic
agents and their future behaviors, the task of the motion planner is to
provide a route that is safe, comfortable, and physically realizable to
the control module. We study the Path Lateral Time (PLT) motion
planner (Sadat et al. 2019), a method that samples physically realiz-
able trajectories, evaluates them, and selects the one with the minimal
cost.

The PLT planner receives S = 50 Monte Carlo samples from the
joint distribution over the trajectories of all actors {Y 1, . . . , Y S}
from the P2 module. It then samples a small set of trajectories τ ∈
T (M,R, x0) given the map M, high-level routing R, and the current
state of the SDV x0. The planned trajectory

τ∗ = argmin
τ∈T (M,R,x0)

S∑
s=1

c(τ, Y s) (6.1)

is then computed to be the one with the minimum expected cost over
the predicted futures, as defined by a cost function c that takes into
account safety and comfort. In this case, erroneous localization gives
the planner a wrong idea about the layout of the static parts of the
scene.

6.3.1 Experimental setup

LP3 Dataset. Evaluating the localization, perception, prediction,
and motion planning tasks requires a dataset that contains accurately
localized self-driving segments, together with the corresponding HD
appearance maps (to evaluate localization), as well as annotations of

learning rich representations for robot state estimation 81

dynamic objects in the scene, their tracks, and their future trajectories
(to evaluate P3). At the time of writing, no current public dataset
satisfied all these criteria3. Therefore, we used our own LP3 dataset. 3 A few days after submitting our

original paper, the nuScenes dataset
(Caesar et al. 2020) added support for
an appearance layer, thereby enabling
similar experiments to the ones we
present in this work.

The LP3 dataset is named after its ability to allow evaluating Local-
ization (L) as well as Perception, Prediction, and motion Planning
(P3). LP3 is a subset of the ATG4D dataset (Casas, Gulino, Suo, Luo,
et al. 2020; Zeng et al. 2019; Casas, Luo, and Urtasun 2018), which
also has appearance maps available. In particular, our maps consist of
2D images generated from aggregated LiDAR intensity, which sum-
marizes the appearance of the ground (cf. the top left of Fig. 6.3) and
are between 6 and 12 months old by the time the SDV traverses the
scene. The dataset encompasses 1,858 sequences of 25 seconds each, all
captured in Pittsburgh, PA.

Besides bounding boxes for vehicles, pedestrians, and bicycles in the
scene, the dataset provides semantic map annotations, such as lanes,
traffic signs, and sidewalks. Importantly, the LP3 dataset also pro-
vides a map appearance layer comprised of the LiDAR intensity of the
static elements of the scene as captured by multiple passes of LiDAR
scans through the area (please refer to the top left of Fig. 6.3 for an
example). Our LP3 dataset makes it possible to evaluate methods that
jointly perform appearance-based LiDAR localization and P2, and to
calculate motion planning metrics.

Simulating Localization Error. We simulate localization error
and study its effects on downstream autonomy tasks. Given a maxi-
mum amount of noise m ∈ R (which we call maximum jitter), we per-
turb the ground truth pose on evaluation frames by sampling transla-
tional or rotational noise from a uniform distribution ε ∼ U (−m,m).
To understand the effects of different types of noise, we evaluate trans-
lational noise and rotational noise independently.

Metrics. For perception, we focus on the mean average preci-
sion metric with at least 70% overlap between the predicted and the
ground truth boxes (mAP@0.7, following (Casas, Luo, and Urtasun
2018)). For prediction, we report the mean scene final displacement
error (mean SFDE4) between the ground truth and the predicted tra- 4 We use meanSFDE instead of

minSFDE since for large numbers
of samples (S = 50 in our case),
minSFDE is overly optimistic. The
presence of unrealistic false posi-
tive trajectory samples can interfere
with the SDV, causing it to break or
swerve, creating a dangerous situa-
tion. However, the minSFDE will not
capture this dangerous behavior as
long as there is at least one good sam-
ple. Please refer to (Casas, Gulino,
Suo, and Urtasun 2020) for a more
detailed discussion.

jectory after 5 seconds (i.e., planning horizon) (Casas, Gulino, Suo,
Luo, et al. 2020).

We run the planner at the beginning of the segments and let the
trajectory unfold for 5 seconds. We then measure the percent of seg-
ments for which there is a collision, and the ℓ2 distance between the
predicted trajectory and the trajectory followed by the human driver
after 5 seconds.

Note that in our setting, all the actors are “passive,” in the sense
that they follow their pre-recorded trajectory independently of the ac-
tions taken by the SDV. This is often called an open-loop evaluation.

learning rich representations for robot state estimation 82

0 20 40 60 80
max translation error (cm)

0.80

0.82

0.84

0.86

0.88
m

AP
@

0.
7

0 1 2 3
max rotation error (deg)

0.80

0.82

0.84

0.86

0.88

m
AP

@
0.

7

0 20 40 60 80
max translation error (cm)

1.9

2.0

2.1

2.2

m
ea

n
SF

DE
 (m

)

0 1 2 3
max rotation error (deg)

1.9

2.0

2.1

2.2

m
ea

n
SF

DE
 (m

)

0 20 40 60 80
max translation error (cm)

2.8

3.0

3.2

3.4

3.6

co
llis

io
n

ra
te

 (%
)

0 1 2 3
max rotation error (deg)

2.8

3.0

3.2

3.4

3.6

co
llis

io
n

ra
te

 (%
)

0 20 40 60 80
max translation error (cm)

4.65

4.70

4.75

2 h
um

an
 (m

)

0 1 2 3
max rotation error (deg)

4.65

4.70

4.75

2 h
um

an
 (m

)

Figure 6.2: The effects of local-
ization error on perception-
prediction and motion planning.
(Top) The effects of perturbing the
ego-pose on P2. SFDE is the mean
displacement error across all samples
at the 5s mark as defined in (Casas,
Gulino, Suo, Luo, et al. 2020), and
mAP@0.7 is the mean average pre-
cision evaluated at an IOU of 0.7.
(Bottom) The effects of perturb-
ing the ego-pose on planning. The
collision rate is the percentage of
examples for which the planned path
collides with another vehicle or pedes-
trian within the 5s simulation, and
ℓ2 human is the distance between the
planned path and the ground truth
human-driven path at the 5s mark.

While evaluating our task in a closed-loop setting would be more desir-
able, building a simulator of reactive agents and counterfactual sensor
inputs comes with its own set of challenges (e.g., realistic LiDAR sim-
ulation, realistic controllable actors, etc.) and is out of the scope of
our work.

6.3.2 Results

We show the effects of perturbing the pose of the ego-vehicle on P2
We observe that the performance of ILVM is barely affected by trans-
lational jitter up to 25 cm, and rotational jitter up to 0.5°. Larger
amounts of translational noise have little effect (~2% mAP, .05 mean
SFDE) up to 80 cm, while the effect is stronger for rotational error
(~7% mAP, 0.30 mean SFDE) up to 3°.

In the bottom row of Fig. 6.2, we show the effects of perturbing the
ego-vehicle pose on motion planning. Similar to P2, MP performance
does not degrade much until translational noise exceeds 25 cm or
rotational noise exceeds 0.5°. We also observe that large translation
errors have small effects relative to rotational noise for both collision
rate and distance to human route. While this is somewhat expected
(as rotational error can cause straight paths to run into sidewalks or
oncoming traffic), it is interesting to quantify these effects formally.

6.4 Joint Localization, Perception, and Prediction

We now formulate a model that performs joint localization and P2
(LP2). First, we lay out the key challenges that we would like our
system to overcome and then explain our design choices in detail.

6.4.1 System Desiderata

Low Latency. In order to provide a safe ride, a self-driving car must
react quickly to changes in its environment. In practice, this means
that we must minimize the time from perception to action. In a naive,

learning rich representations for robot state estimation 83

Cross	correlation

Sample	rotations

Multimodal	forecastingDetector
and	predictor

Rasterized
map	backbone

LiDAR	backbone	

LiDAR	side	net	

�-blend

+

Intensity	map
embedding	net	

Matching
score	map

Perception-prediction

Localization

Crop

LiDAR
sweep	

Voxelize	
@5cm/vox

Voxelize	
@20cm/vox

Upsample

GNN

Semantic	map	(rasterized)

Ego-car	pose	

x

y
Map	intensity	

Figure 6.3: The architecture of
the combined localization and
perception-prediction (LP2)
model. We integrate a LiDAR
matching component into a perception
architecture, which gives it the ability
to recover from upstream localization
problems. By sharing feature maps
between the two tasks, we can achieve
this with very little computational
overhead.

cascaded autonomy system, the running time of each component adds
up linearly, which may result in unacceptable latency. It is, therefore,
necessary for new additions to the system to have as little impact on
the overall run time as possible, for example, by reusing computation
wherever possible.

Learning-Based Localization. As discussed in Chapters 4, 5,
and 7, localization systems with learned components are typically bet-
ter at discerning semantic aspects of the scene that are traditionally
difficult to discriminate with purely geometric features (e.g., growing
vegetation, tree stumps, and dynamic objects). Additionally, they
have the potential of being more invariant to appearance changes
due to season, weather, and illumination. Therefore, we would like to
incorporate a learning-based localization component in our system.
Moreover, since P2 systems are typically heavily driven by learning,
it should be possible to incorporate learning-based localization by
sharing computation between the two modules, resulting in reduced
overhead to the overall LP2 system.

Simple Training and Deployment. We would like our joint
LP2 system to be easier to train and deploy than its classical counter-
part. Given the large amounts of ML infrastructure invested around
P2 systems (e.g., on dataset curation, labeling, active learning, and
monitoring), it makes sense to design a localization subsystem that
can be trained as a smaller addition to a larger P2 model (Sculley
et al. 2015). This should also make it easier to iterate on the more
lightweight localization module without the need to retrain the more
computationally expensive P2 component.

learning rich representations for robot state estimation 84

6.4.2 Designing an LP2 System

We now explain our model design choices, highlighting the ways they
overcome the challenges listed above and achieve our design goals. We
show an overview of the proposed architecture in Fig. 6.3.

Input Representation. Our system receives LiDAR as the sensor
input, which is then converted to a bird’s-eye view (BEV) voxeliza-
tion with the channels of the 2D input corresponding to the height
dimension (B. Yang, Luo, and Urtasun 2018). Despite P2 and local-
ization models both relying on some form of voxelized LiDAR input,
perception-prediction models often use a coarser LiDAR resolution
(e.g., 20 cm (W. Luo, Yang, and Urtasun 2018; Zeng et al. 2019))
to accommodate larger regions, while matching-based localizers typi-
cally require a finer-grained resolution to localize with higher precision
(Chapter 4.3).

Using only a fine-resolution voxelization for an LP2 model would be
the simplest but it imposes high runtime efficiency costs. Therefore,
to accommodate these resolution differences, our method simultane-
ously rasterizes the incoming LiDAR point cloud x into two tensors of
different resolutions, x̃coarse for perception and x̃fine for localization.

Perception and Prediction. For our P2 subsystem, we rely on
ILVM (Casas, Gulino, Suo, Luo, et al. 2020), a perception method
whose robustness to localization errors we quantified in Chapter 6.3;
this corresponds to the lower part of Fig. 6.3. The proposed P2 ap-
proach contains four main submodules. (i) A lightweight network
processes a rasterized semantic map centered at the current vehicle
pose, which transforms the map from its own reference frame to the
vehicle reference frame. We pass our estimated pose to this module.
(ii) Another neural backbone h extracts features from a coarsely vox-
elized LiDAR sweep x̃coarse which is expressed in the vehicle reference
frame. These two feature maps are concatenated and passed to (iii)
a detector-predictor which encodes the scene into a latent variable
Z, and (iv) a graph neural network where each node represents a de-
tected actor, and which deterministically decodes samples from Z into
samples of the joint posterior distribution over all actor trajectories.

Localization. We tackle localization using the deep LiDAR em-
bedding ground intensity localization approach discussed in Chapter 4.
The idea behind ground intensity localization (Levinson, Montemerlo,
and Thrun 2007) is to align the (sparse) observed LiDAR sweep x
with a pre-built (dense) map of the LiDAR intensity patterns of the
static scene, m. This localizer learns deep functions that produce spa-
tial embeddings of both the map f(m) and the voxelized LiDAR sweep
g(x̃fine) before alignment. Following the same parametrization as in
Chapter 4, we express the vehicle pose with three degrees of freedom

learning rich representations for robot state estimation 85

(DoF), x, y, and yaw, represented as x ∈ R3, and perform inference
following the framework from Chapter 2.4.

Multi-Resolution Feature Sharing. An important advantage
of localizing with LiDAR matching is that, in contrast to, e.g., point
cloud-based localizers (Du, Wang, and Cremers 2020), it uses the same
BEV input representation as P2, enabling a substantial amount of
computation to be shared between both systems. However, as dis-
cussed earlier, the inputs to the P2 and localization backbones use
different resolutions, which can make information fusion difficult.

We address this issue by upsampling a crop of the LiDAR feature
map computed by the coarse perception backbone to match the res-
olution of the finer features in the localization backbone. We then
add the feature maps together using a weighted sum to produce the
final localization embedding, as depicted in Fig. 6.3. This allows us
to compute localization LiDAR embeddings with very little runtime
and memory overhead compared to the base perception-prediction
network.

6.4.3 Learning

We optimize the full model using side-tuning (J. O. Zhang et al.
2020). We first train the heavier perception-prediction module, and
then add the LiDAR branch of the localizer as a side-tuned module5. 5 We note that the localization and

the perception map embedding net-
works do not share any weights or
feature maps. This allows us to learn
the intensity map embeddings sep-
arately and even pre-compute them
offline. The perception (semantic)
map embeddings cannot be cached
because the semantic map also en-
codes dynamic elements such as traffic
light states.

In the second stage, we freeze the weights of the perception-prediction
network (yellow modules in Fig. 6.3), and only learn the map and on-
line branches of the localizer (purple modules in Fig. 6.3). There are
three benefits to this approach: first, there is no risk of catastrophic
forgetting in the perception-prediction task, which can be problematic
as it typically requires 3–5× more computation to train compared to
the localizer alone; second, we do not need to balance the loss terms
for localization vs. perception-prediction, eliminating the need for an
additional hyperparameter; third, training the localizer network can be
done much faster than the full system since the P2 header no longer
needs to be evaluated and fewer gradients need to be stored.

Perception and Prediction. We train the P2 component using
supervised learning by minimizing a loss which combines object de-
tection with motion forecasting while accounting for the multimodal
nature of the trajectory predictions. The P2 loss is, therefore, struc-
tured as

LP2 = LDet + αLPred, (6.2)

where LDet optimizes a binary cross entropy term for the object detec-
tions and one based on smooth-ℓ1 for the box regression parameters
(B. Yang, Luo, and Urtasun 2018), LPred optimizes the ELBO of the
log-likelihood of the inferred n trajectories over t time steps, condi-

learning rich representations for robot state estimation 86

tioned on the input (Casas, Gulino, Suo, Luo, et al. 2020), and α

represents a scalar weighting term selected empirically.
Localization. Learning f and g end-to-end produces representa-

tions that are invariant to LiDAR intensity calibration, and ignore
aspects of the scene irrelevant to localization6. Learning is performed 6 Specifically, f and g correspond to

the map and the online embedding
networks, denoted in Chapter 4 as
fm(·;wm) and fo(·;wo), respectively.

as presented in Chapter 4 by treating localization as a classification
task and minimizing the cross-entropy between the discrete distri-
bution of p(x) and the ground truth pose offset pGT expressed using
one-hot encoding:

LLoc = −
∑

x
p(x)GT log p(x). (6.3)

The map and online embedding networks f and g use an architec-
ture based on the P2 map raster backbone and do not share weights.
In Chapter 6.5, we also show that it is possible to substantially im-
prove run time by reducing the capacity of g while keeping f fixed,
with little impact on overall performance. We refer to this architecture
as a Pixor backbone (B. Yang, Luo, and Urtasun 2018).

6.5 Experiments

We design our experiments to test the accuracy of our multi-task
model on the joint localization and P2 (LP2) task. We also show how
these improvements translate to safe and comfortable rides based on
motion planning metrics. We refer to the task of doing localization,
P2, and motion planning as LP3.

Dataset and Metrics. We use the LP3 dataset (cf. Chapter 6.3)
for all our experiments. To evaluate localization accuracy, following
prior work (Chapter 5), we report the percentage of frames on which
the localizer matches the ground truth exactly, and where it matches
the ground truth or a neighboring offset as recall @ 1 (r@1) and recall
@ 2 (r@2), respectively. In our setting, the former metric corresponds
to exactly matching the ground truth, up to our state space resolu-
tion (5 cm and 0.5◦), while the latter corresponds to being inside a
15cm × 15cm × 1.5◦ region centered at the ground truth. Following
Chapter 6.3, we focus on mAP@0.7 for detection and mean SFDE for
prediction. For motion planning, besides collision rate and ℓ2 distance
to human trajectory, we also measure lateral acceleration, jerk, and
progress toward the planning goal.

Experimental Setup. There are multiple ways to design an ex-
periment that tests a localizer. One alternative is to start the state
estimation at the identity and later align the produced trajectory
with the ground truth (as is often done in SLAM (Thrun 2007)). Al-
ternatively, online localization often initializes the robot pose at the

learning rich representations for robot state estimation 87

2 4 6 8
Localization inference time (ms)

0.450

0.475

0.500

0.525

0.550
re

ca
ll@

1

Joint LP2 (ours)
Sequential LP2

2 4 6 8
Localization inference time (ms)

0.94

0.95

0.96

0.97

re
ca

ll@
2

Joint LP2 (ours)
Sequential LP2

Figure 6.4: Localizer embedding
runtime vs. recall. The localization
performance and runtime of the
single-task (i.e., sequential) and
multi-task (i.e., joint) localization
methods. Faster inference is achieved
by narrower and shallower networks
for the online LiDAR embedding.
Note that the Y axes are focused on
narrow intervals to improve visibility;
on an absolute scale, the impact of
reducing the network capacity is
small.

ground truth location, and measures how far a localizer can travel be-
fore obtaining an incorrect pose (see Chapters 3, 4; also (Y. Zhou et
al. 2020)). By definition, these setups assume that the initial pose
is correct and do not test the ability to recover from localization
failure—which is crucial for self-driving. Instead, we assume a self-
driving scenario where the localization of the pose is initially incorrect.
As such, we perturb the true pose of the vehicle and thus measure the
ability of the localizer to recover from this failure, as well as the ability
of P2 and MP to deal with the localization failure. The perturbations
are performed following the same uniform noise policy described in
Chapter 6.3.1 with 0.5 meters for translation and 1.5° for rotation.

Implementation Details. We train our model for five epochs
with the Adam (Kingma and Ba 2015) optimizer using 16 GPUs.
The coarse LiDAR tensor x̃coarse is rasterized at 20 cm/voxel, while
the fine tensor x̃fine uses 5 cm/voxel. The spatial region correspond-
ing to the coarse LiDAR voxelization is 144m × 80m × 3.2m, while
the spatial region corresponding to the fine LiDAR voxelization is
48.05m × 24.05m × 3.2m7. Reducing the spatial extent of the high- 7 The dimensions ensure pixel-level

alignment of the coarse and fine
features in the presence of the upsam-
pling connection applied to the coarse
features before fusing them with the
fine ones.

resolution rasterization reduces the run time of the system without
sacrificing performance. The localization search range covers ±0.5m
relative to the initial vehicle pose estimate in the x and y dimension,
discretized at 5 cm intervals, and [-1.5◦, -1.0◦, -0.5◦, 0.0◦, 0.5◦, 1.0◦,
1.5◦] in the yaw dimension. We do not use height information from the
maps, which are encoded as BEV images. When training the localizer,
following Chapter 4.3, we add uniform noise to the ground truth pose
up to the size of the search range.

Localization inference time comparison. While nearly identi-
cal in terms of matching accuracy when comparing models with recall
@ 2 performance similar to those presented in Chapter 4, the proposed
approach is much faster due to a more efficient architecture and shar-
ing computation with the perception backbone, as depicted in Fig. 6.4.

Results. In Table 6.1, we evaluate localization and P2 performance
through motion planning metrics. Notably, despite significant varia-

learning rich representations for robot state estimation 88

Model P2 pose Planning r@1 ↑ r@2 ↑ Collision ↓ ℓ2 human ↓ Lat. acc. ↓ Jerk ↓ Progress ↑
(GT, N) Pose (GT, N) (%) (%) (% up to 5s) (m @ 5s) (m/s2) (m/s3) (m @ 5s)

ILVM GT GT - - 2.915 4.64 2.13 1.82 24.95
ILVM GT N - - 3.168 4.68 2.21 1.83 24.95
ILVM N N - - 3.511 4.70 2.20 1.83 24.92

Ours Joint (Tiny) N N 46.6 93.5 2.962 4.64 2.13 1.82 24.96
Ours Joint (Big) N N 52.5 96.9 2.922 4.64 2.13 1.82 24.95

Table 6.1: Motion planning eval-
uation using different pose es-
timates and actor predictions.
For the P2 and Planning poses: GT
denotes ground truth (the pose was
not altered); N denotes that local-
ization noise was added (translation
and rotation sampled uniformly at
random from [−0.5m,+0.5m] and
[−1.5 deg,+1.5 deg], respectively).
‘Big’ refers to the largest width Pixor
Embedding Net from Fig 6.4, and
‘Tiny’ refers to the smallest. Bold
denotes the best results (within an
epsilon threshold), and italics the
second-best results.

tion in localization metrics, both of our localization models perform
similarly well when evaluated in terms of the motion planning met-
rics. These results further confirm the observations from our jitter
experiments (Fig. 6.2): both P2 and a short-term rollout of PLT per-
form similarly well when subject to a modest amount of localization
error. This means that besides localization accuracy (which is impor-
tant from an interpretability perspective), we have plenty of room to
optimize for latency and simplicity when designing the localization
component of an LP2 architecture. Our tiny Pixor-based localizer only
takes 2 ms of overhead on top of the P2 subsystem, while providing a
robust learned localization signal to the autonomy system.

Ablation Study. We perform an ablation study to investigate
the trade-off between matching performance and inference time in the
localization part of our system. We show our results in Fig. 6.4.

We compare the effectiveness of our localization network trained to
reuse P2 features (i.e., the joint LP2 network) to a network trained
to perform localization from scratch (i.e., as used in a sequential set-
ting). In both cases, we achieve faster inference by using shallower
(fewer layers) and narrower networks (fewer channels) for the online
LiDAR embedding. The reported inference time does not include the
intensity map embedding branch, which can be pre-computed offline.
The largest model corresponds to an architecture similar to the P2
rasterized HD map backbone (which is itself a smaller version of the
P2 LiDAR backbone), while the faster and smaller models have fewer
layers or fewer channels in each layer. The four largest models have
11 convolutional layers and a factor of C = 1/20, 1/21, 1/23, 1/24 the
number of channels as the largest model. The smallest (fifth largest)
has C = 1/24 and five layers rather than 11, which corresponds to one
layer around each of the three pooling/upsampling stages followed by
a final layer. We observe that while reducing model size leads to a mi-
nor drop in matching accuracy, this does not end up affecting motion
planning, as shown in Tab. 6.1, while at the same time reducing the
online embedding computation time four-fold.

Finally, Table 6.2 compares our proposed online LiDAR embed-

learning rich representations for robot state estimation 89

Model Time (ms) r@1 r@2

LiDAR Localizer (Chap. 4) 25.92 0.52 0.95
LiDAR Localizer (Pixor-based) 2.79 0.47 0.95
Joint LP2 (Ours) 1.95 0.49 0.95

Table 6.2: Localization inference
time comparison. While being
nearly identical in terms of matching
accuracy when comparing models
with recall @ 2 performance similar to
the system in Chap. 4, the proposed
approach is much faster due to a
more efficient architecture and sharing
computation with the perception
backbone.ding networks to the state of the art. The U-Net-based approach from

Chapter 4 was shown to outperform classic approaches like ICP-based
localization, especially in challenging environments such as highways.
Our results show that we can already match the original performance
with a much faster network architecture, and that leveraging the per-
ception feature maps allows even smaller models to perform at the
same level. We measure all inference times on an NVIDIA Quadro
RTX 5000 GPU8. 8 The Quadro RTX 5000 GPU (Tur-

ing) was released in 2018, and its
performance roughly matches an
RTX 2080 SUPER. It has 16GB of
GDDR6 and 3072 CUDA Cores. It
should not be confused with the much
faster RTX A5000 Ampere Gener-
ation, released in 2021, or with the
likewise faster NVIDIA RTX 5000
Ada Generation, which was released
in 2023.

Discussion. An alternative approach to tackle the LP2 problem
is to train a network from scratch that balances both the localization
and perception-prediction terms. We tried this but found that it per-
formed worse than fine-tuning the localization module a posteriori.
Understanding why this phenomenon occurs, and training joint LP2
networks from scratch is a question we leave for future work.

6.6 Conclusion

While prior research in autonomous driving has explored either full
end-to-end learning or the joint study of tasks such as object detection
and motion forecasting, the task of localization has not received as
much attention in the context of perception and planning systems,
despite the strong reliance of self-driving vehicles on HD maps for
these tasks.

In this chapter, we studied how localization errors affect state-of-
the-art perception, prediction, and motion-planning systems. Our
analysis showed that while perception is robust to relatively small lo-
calization errors, motion planning performance suffers more, especially
in case of yaw errors, motivating the need to detect and correct such
issues. We subsequently proposed a multi-task learning solution ca-
pable of jointly localizing against an HD map while also performing
object detection and motion forecasting, and showed that localization
errors can be successfully detected and corrected in less than 2 ms of
GPU time.

6.6.1 Future Work in Joint Perception and Localization

Our foray into this line of research has uncovered multiple areas for
improvement that may be addressed in future work. For example, it

learning rich representations for robot state estimation 90

would be interesting to evaluate our proposed architecture in a closed-
loop setting with both reactive actors and counterfactual sensor inputs
(Gulino et al. 2024; Z. Yang et al. 2023; Tonderski et al. 2024). We
would also like to better characterize the performance of a localizer
trained jointly with other autonomy components, including metrics
like its localization recovery rate, its localization accuracy when en-
hanced with a time-aware pose filter, and its robustness to changes in
the map (e.g., due to construction, road re-pavement, or seasonality).
Moreover, future work could benefit from a more thorough comparison
with classical localization approaches such as those based on LiDAR
registration (Yoneda et al. 2014). Similarly, future work may fur-
ther evaluate the motion planner by classifying the incurred collisions
according to their severity (Antonante et al. 2023), which would en-
able a better understanding of the types of problems that arise due
to localization errors. Finally, an alternative to jointly learning LP2
networks is to train P2 modules with imperfect localization as input,
akin to data augmentation, while also applying regularization to avoid
pathological cases of P2 modules which simply ignore the HD map
altogether.

6.6.2 Limitations of the Proposed Online Localization Approaches

Despite the robustness of the localization approaches presented in
the past four chapters, they are not without limitations, and several
avenues of improvement remain.

• State Space Limitations. The proposed methods operate on a
discretized state space limited to three degrees of freedom: x, y,
and yaw. While this can be sufficient for many ground robotics ap-
plications, to achieve full scalability, we need robustness to factors
such as vibrations, bumps, potholes, etc. This requires modeling the
full 6-DoF rigid pose of the vehicles—(x, y, z, yaw, pitch, roll).

• Initialization. The proposed systems tackle online localization.
They assume a good initial pose estimate located within the (lim-
ited) search range of the matcher. This setting also limits the sys-
tem’s ability to recover from failures, though this rarely occurs in
practice.
While we do tackle global localization next, in Chapter 7, future
research could investigate whether our assumption of accurate ini-
tial location can be relaxed. Advances in this area can also aid
cases where pose is lost, and recovery must be performed without a
reliable initial estimate.

• Angular Dimension. Even though we can perform spatial match-
ing efficiently in the spectral domain, enabling a fine-grained search

91

range, matching over the yaw dimension still requires an individ-
ual correlation operation for each candidate. This limits the size
and granularity of the search range in this dimension. Continu-
ously matching in the yaw dimension, as well as in the pitch and
roll ones, can be done using the Fourier-Mellin transform, which has
been successfully applied to various image and RADAR matching
tasks in the past (Dasgupta and Chatterji 1996; Checchin et al.
2010). Spectral matching has also been shown to be effective for 6-
DoF matching (Bernreiter et al. 2021). Extending these techniques
to deep LiDAR matching can lead to improved accuracy and ro-
bustness by unlocking wider convergence basins for the optimization
problem.

92

7
Large-Scale Analysis: The Pit30M Dataset

7.1 Overview

Past chapters have highlighted the critical role of localization in au-
tonomous driving. Localization allows SDVs to navigate to their des-
tinations and to leverage HD maps, which boosts and contextualizes
downstream autonomy tasks such as perception, motion forecasting,
and motion planning.

As discussed in Chapter 2, we can divide localization tasks into two
broad categories: online and global. Previous chapters have focused on
the former category.

Figure 7.1: The proposed new
localization dataset, Pit30M. Top
left: The geographic extent of the
dataset. Each square is 1 km2, for a
total area of about 50 km2 plus over
20 km of highway in the Pittsburgh
Metropolitan Area. Bottom left: The
temporal span of our dataset. The
background colors code for night,
day, and astronomical, nautical, and
civil twilight (resp. dawn). Right:
Examples of images and LiDAR
point clouds taken in the same place
at different times. These trips all
happened between February 2017 and
March 2018.

Online localization assumes that the pose at the previous time step
is known, and is tasked with propagating that information over time
and adjusting it based on current sensory measurements. However,
small errors may accumulate during online localization, making the
pose estimate drift over time or even fail altogether. Global localiza-
tion aims to overcome this issue by estimating the global pose without
any assumptions from previous steps. Global localization, therefore,
serves a dual function: it is used to initialize an online localization sys-
tem, and it forms an important fail-safe module that allows robots to

learning rich representations for robot state estimation 93

recover from temporary online localization failures.
Autonomous driving faces unique challenges when it comes to

global localization, such as fast motion, dynamic objects, and rapidly
changing environmental conditions. To systematically evaluate various
global localization approaches in this context, we need a benchmark
that reflects the setting and its particular challenges. Ideally, the
dataset employed to carry out this study should be diverse, large-scale,
and have accurate ground truth over a variety of environments and
traffic scenarios.

Furthermore, since autonomous driving platforms typically carry
a variety of sensors that provide complementary information (such
as LiDAR, camera, GPS, and IMU), the benchmark should contain
multi-sensory data to enable researchers to exploit multi-modal inputs
for the global localization task. Unfortunately, no existing dataset
fulfills all these criteria.

In this chapter, we introduce Pit30M, a dataset that spans over a
year of driving in Pittsburgh, PA, USA, comprising over 1,000 trips,
25,000 km, and 1,500 hours driven under different times of day, sea-
sons, and weather conditions. The Pit30M dataset is accessible online
under a permissive non-commercial license1. We provide accurate 1 The dataset is available for down-

load at https://pit30m.github.io/,
and it can be accessed with the help
of a Python Software Development
Kit (SDK), which is open source at
https://github.com/pit30m/pit30m and
installable as: pip install pit30m

ground truth poses (under 10 cm of error) for all our data. With over
30 million images and LiDAR sweeps, our dataset is one to two orders
of magnitude larger than the biggest publicly available dataset for this
task. We also provide metadata such as time of day, weather, and ap-
proximate occlusion by leveraging image and LiDAR segmentation,
which allows us to formally quantify the diversity in our dataset and
understand localization errors. We give an overview of our dataset’s
geographical and temporal extent in Fig. 7.1.

Due to their scalability and accuracy in the context of a dataset as
dense as Pit30M, we focus on retrieval-based methods for localization
in this chapter. We investigate both image- and LiDAR-based ap-
proaches to retrieval localization. For visual localization, and with our
dataset’s scale, diversity, and density, we find that a modern convo-
lutional backbone with a simple pooling scheme performs on par with
state-of-the-art architectures specifically designed for this task, such as
NetVLAD (Arandjelovic et al. 2016). For LiDAR-based localization,
we investigate both the latest network architectures and suitable point
cloud representations. We show that bird’s-eye view voxelization cou-
pled with a strong convolutional backbone is competitive with the best
previously proposed point cloud representations and architectures for
this task—which also rely on NetVLAD pooling. Finally, we provide
an analysis of the failure modes and complementarity of LiDAR- and
camera-based localization.

https://pit30m.github.io
https://github.com/pit30m/pit30m

learning rich representations for robot state estimation 94

7.1.1 Other benefits

Thanks to its scale, density, and diversity, the Pit30M dataset can be
applied to a multitude of modern computer vision tasks beyond its
original goal of studying localization for SDVs.

• Novel View Synthesis. The Pit30M dataset includes high-
resolution, multi-sensor data which covers many parts of Pittsburgh
multiple times under varying conditions: different lanes, times of
day, weather, and occlusion levels. This setup lends itself well to
analyzing modern approaches to large-scale novel-view synthesis
(Tancik et al. 2022; Rematas et al. 2022; Turki et al. 2023; Kerbl
et al. 2023; Yan et al. 2024) by enabling the selection of challeng-
ing validation sets with materially different viewpoints of the same
physical regions. Large-scale neural rendering methods are in dire
need of benchmarks for quantifying extrapolation quality; for exam-
ple, prior work such as SUDS (Turki et al. 2023) are evaluated on
KITTI using the same camera as the method is trained with, and
only on novel timestamps, which limits the amount of extrapolation
the representation is evaluated on, compared to, e.g., evaluating
a new camera on a different lane2. Similarly, (Yan et al. 2024) 2 Relighting is a task which is covered

even less by benchmarks. A potential
direction for future relighting bench-
marks could involve being where given
a sequence recorded in lighting condi-
tion A (e.g., mid-day) and one image
in lighting condition B (e.g., at dusk).
The evaluation would then involve
rendering the whole sequence from
a different lane and camera, using
lighting condition B, which would be
very challenging. However, the avail-
ability of ground truth could ensure
quantifiable progress is made towards
solving this task.

showed promising results by leveraging multi-object-aware Gaussian
Splatting (Kerbl et al. 2023) but only performed quantitative eval-
uation within the same sequence—“We select every 10th image in
the sequence as the test frames and use the remaining for training”.
These relatively simple protocols highlight the need for new, more
challenging benchmarks for NVS.

• Vision foundation models. Large VLMs3 have demonstrated

3 Visual-Language Models

remarkable performance in zero-shot tasks such as classification,
segmentation, or image captioning (Oquab et al. 2023) and are now
a common component of commercial chatbots such as Gemini or
ChatGPT. Such foundation models have likewise been explored for
autonomous driving, but they are still in their infancy (A. Hu et
al. 2023). Nevertheless, BEV features can generalize well, as we
saw with the “anti-car” detector from Chapter 4 or the efficacy
of the multi-task approach described in Chapter 6. A dataset of
the scale of Pit30M has the potential to be used in the training of
such models at a scale that is incomparable with what is available
in other datasets, which has the potential for massive uplift in
downstream tasks such as perception and prediction.

• Unsupervised object discovery. It has been shown that lack
of labels is not a limitation when it comes to pre-training, as
many methods exist that can bootstrap detectors from raw data
(You, Luo, Phoo, et al. 2022; L. Zhang et al. 2023; K. Luo et al.
2024). The large number of diverse traffic scenes present in Pit30M

learning rich representations for robot state estimation 95

makes it an attractive dataset for studying how unsupervised object
discovery and self-training scales with large amounts of domain-
specific data.

• Approximate Nearest-Neighbor (ANN) benchmarking. Ap-
proximate nearest-neighbor methods benefit from testing on a wide
range of domains. In computer vision, this has traditionally been
done with datasets such as SIFT10M (Jegou, Douze, and Schmid
2010; Martinez-Covarrubias 2018). A large, multi-sensor dataset
such as Pit30M can be used to bring ANN benchmarking to the
next level through its sheer scale and multi-modality. ANN is a
critical component of large-scale retrieval-augmented generation
(RAG), a line of work which can be used to dramatically increase
the context window size of large language models (LLMs) and
vision-language models (VLMs) (Lewis et al. 2020). Advances in
ANN can, therefore, bring about performance and efficiency ben-
efits to a wide range of tasks, from robot localization to language
modeling.

7.2 Current Localization Datasets

Datasets are a key component of research in large-scale localization.
On the one hand, datasets that span large city areas, such as SFO-
Landmarks (D. M. Chen et al. 2011) and Tokyo/Pittsburgh Street
view (Torii, Sivic, et al. 2015; Torii, Arandjelovic, et al. 2015) often
provide only GPS readings as reference poses4. Unfortunately, GPS 4 SFO-Landmarks also considers

visual overlap to compute ground
truth.

can be inaccurate by several meters, making it difficult to quantify the
error of localization methods that aim for sub-meter accuracy. This is
evident in the evaluation protocol of most previous work in large-scale
retrieval-based localization, which considers a database match to be
correct if it is within 20 or 25 meters of the query (Torii, Sivic, et al.
2015; Arandjelovic et al. 2016; Uy and Lee 2018; W. Zhang and Xiao
2019; Z. Liu et al. 2019). This level of accuracy is insufficient for most
robotic applications, including SDVs.

Other datasets such as Cambridge (Kendall, Grimes, and Cipolla
2015) and Aachen (Sattler et al. 2012, 2018) derive ground truth
from SfM5 models (Schonberger and Frahm 2016), for which the error 5 Structure-from-Motion
is difficult to quantify and, due to the computational cost of SfM,
remain challenging to extend to city-scale. Urban driving datasets
such as KITTI (Geiger et al. 2013), Oxford RobotCar (Maddern et
al. 2017) DeepLoc (Radwan, Valada, and Burgard 2018) and NCLT
(Carlevaris-Bianco, Ushani, and Eustice 2016) use robotic platforms
for data collection. However, they either only cover multiple areas of
the environment just once, or focus on revisiting the same route up
to 100 times, limiting geographic extent. Finally, these datasets often

learning rich representations for robot state estimation 96

derive ground truth localization from GPS and inertial filters, which
do not achieve centimeter-level accuracy6. 6 While RTK ground truth was even-

tually released for the Oxford Robot-
car dataset (Maddern et al. 2020), it
was not available at the time of our
original analysis and publication.

Recent work has used manual annotations to provide more accu-
rate ground truth localization, either via human verification of 2D-3D
matches with existing SfM models (Sattler et al. 2017) or by manually
aligning LiDAR and SfM point clouds in publicly available datasets
(Sattler et al. 2018). However, these annotations have remained rel-
atively small-scale efforts, providing around 100,000 localized images
in the largest case. In contrast, we aim for a dataset that provides
millions of accurately-localized images and LiDAR point clouds.

7.3 Pit30M: Global Localization at City Scale

We assume that the region where our SDV is located has previously
been covered with an appearance database. This dataset should ide-
ally have three characteristics:

• Diversity in appearance is necessary to train models that learn
to recognize the same site under changes due to weather, seasons,
illumination, construction, occlusion, and dynamic objects in the
scene.

• Scale refers to the area spanned by the dataset. We want our
dataset to cover an entire city, as this is the typical operational
domain of a self-driving car.

• Accurate ground truth provides a clear evaluation benchmark
for methods that achieve sub-meter accuracy. We can also use this
ground truth as a supervisory signal to improve retrieval-based
localization.

Distance
(km)

Images
(thousands)

Accurate GT
(thousands)

Geo span
(km2)

Time
span

S LiDAR
type

Pittsburgh 250k (Torii et al.) – 250 – ∼ 16 – – –
Tokyo 24/7 (Torii et al.) – ∗600 ∗∗1 2.56 – – –
SFO Landmarks (Chen et al.) – 1 700 1 700 ∼ 18 – – (Unspecified) ✓

DeepLoc (Radwan et al.) 4 2 2 0.015 1 day 10 (Unspecified) ✓
NCLT (Carlevaris-Bianco et al.) 147 630 630 ∼ 1 15 m 27 (Velodyne 32) ✓

Aachen (Sattler et al., 2012) – 5 5⋆ ∼ 1.5 – –
CMU (Bansal et al.) 98.7 82 82⋆ – 3 m 12
Robotcar (Maddern et al.) 1 000 ‡8 500 38⋆ ∼ 10 18 m 133 (2x SICK LMS) ✓

Pit30M (Ours) 25 000 30 000 30 000 ∼ 50 14 m 1343 (Velodyne 64) ✓

Table 7.1: Comparison of datasets
for large-scale visual localization.
‡The dataset has >20M images, but
we consider only the frontal camera
to make it comparable to our dataset.
∗Including synthesized views. ∗∗The
number of query images localized
manually. S denotes the number of
sessions. ‘m’ is short for months.

learning rich representations for robot state estimation 97

We aggregated a dataset of 1,343 trips and 30 million images and
LiDAR point clouds from data collected by a fleet of self-driving cars.
Our data was collected from January 2017 to February 2018 in the
Pittsburgh metropolitan area, PA, USA. The vehicles carry a Velo-
dyne HDL-64E LiDAR sensor, a wheel odometer, and an IMU, which
we use to localize offline using vehicle dynamics and LiDAR regis-
tration against a pre-existing dense 3D scan of the scene geometry.
These measurements are all fed to a commercial batch optimization
system validated to yield under 10 cm localization error. We use a
high-definition, global shutter color camera located on the roof of the
vehicle, facing forward at all times, which provides images at a res-
olution of 1920 × 1200 pixels. The horizontal and vertical fields of
view are 78.6◦ and 52.5◦, respectively7. The intrinsic and extrinsic 7 The dataset itself includes six addi-

tional cameras for some of the existing
logs. These include four additional
wide-FoV cameras (forward-left,
forward-right, rear-left, rear-right),
as well as a forward-facing narrow
FoV stereo pair. We did not include
these cameras in our analysis at the
time of publication due to computa-
tional constraints. Please refer to the
Pit30M website and development kit
for additional information.

calibration parameters of the cameras and LiDAR (e.g., the LiDAR-
to-camera rigid transformation) are computed and validated a priori
using a standard setup consisting of fiducial targets and non-linear
optimization. We also carry a consumer-grade GPS sensor. The con-
tinuous stream of points produced by the LiDAR is broken up into
100ms partitions and motion-compensated. The corresponding camera
image is selected such that it is as close as possible to the moment
that the LiDAR’s rolling shutter passed through the middle of its FoV.
The synchronization is within a few milliseconds.

Pit30M is, to the best of our knowledge, the largest benchmark
for large-scale localization to date both in terms of images, readings,
and accurate ground truth information. Table 7.1 provides summary
statistics of existing datasets (described in the previous section) as
well as ours, and Fig. 7.1 shows the extent of our data. The proposed
dataset includes over 25,000 km and 1,500 hours of driving, resulting
in a benchmark that is one to two orders of magnitude larger than
those used in previous work. Moreover, our dataset spans all seasons,
diverse weather conditions (including rain, sleet, and snow), multiple
times of day, including images taken at night and with low natural
lighting, as well as construction and changes in buildings and pave-
ment.

Large-scale metadata. Previous datasets have provided manual,
trip-level metadata, typically for identifying challenging conditions for
localization. For example, the Oxford dataset (Maddern et al. 2017)
provides 11 different tags, including “sun,” “clouds,” “dusk,” and
“snow,” and the CMU seasons dataset (Sattler et al. 2018) includes
tags for “park,” “urban,” “foliage,” and “low sun,” among others.

Unfortunately, trip-level tags can be ambiguous; e.g., the same trip
may be sunny and cloudy at different times. Instead, we have collected
more granular metadata using historical weather and astronomical
data, which can be obtained at scale. In particular, we have collected

learning rich representations for robot state estimation 98

0 10 20 30 40 50

Lidar occlusion (%)

0.00

0.02

0.04

0.06

0.08

0.10

0 10 20 30 40

Image occlusion (%)

0.000

0.025

0.050

0.075

0.100

0.125

10 0 10 20 30

Temperature (C)

0.00

0.02

0.04

0.06

0.08

0 20 40 60 80 100

Cloud cover (%)

0.00

0.05

0.10

0.15

0.0 0.5 1.0 1.5 2.0

Precipitation intensity (mm)

0

5

10

15

0 20 40 60 80

Sun angle w.r.t. horizon (degrees)

0.000

0.005

0.010

0.015

0.020

2 4 6 8 10 12 14 16

Visibility (km)

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

UV index

0

200000

400000

600000

co
un

t

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Humidity (%)

0

1

2

3

0 1 2 3 4

Wind speed (m/s)

0.0

0.2

0.4

0.6

10 12 14 16 18 20 22 24

Time of day (hour)

0.00

0.05

0.10

0.15

0 2 4 6 8 10

Construction pixels (%)

0

1

2

3

4

Figure 7.2: Probability density
functions (PDFs) for metadata in
Pit30M. For a complete description
of these tags, please refer to Table 7.2

learning rich representations for robot state estimation 99

weather via the darksky.net public API, and estimated the sun’s angle
in the sky using the skyfield library8. We have also used state-of- 8 While the darksky service has shut

down completely as of January 1st,
2023, following its acquisition by
Apple, all historic data for Pit30M is
still available.

the-art LiDAR (C. Zhang, Luo, and Urtasun 2018) and image (Bai
and Urtasun 2017) semantic segmentation to estimate the degree
of background occlusion in our dataset. We showcase our labels by
analyzing the results of our preliminary benchmark in Chapter 7.5.
Fig. 7.2 shows the probability density functions of some of our tags.
We provide a detailed description of the collected data in Table 7.2.

Field Units Description

Time of day Datetime Unix timestamp.
Angle of the sun w.r.t. horizon Degrees Angle between the horizon and the center of the sun, as

observed from the location of the particular sensor read-
ing. This value is zero at both dawn and twilight and is
commonly used to estimate light for navigation purposes
in, e.g., nautical applications. The value becomes negative
when the sun is below the horizon relative to the observer.

Precipitation Millimeters An amount larger than zero means snow or rain is present.
Visibility Kilometers Distance up to which objects can be clearly discerned.

Heavy fog may result in low visibility.
UV index Integer Integer value indicating the intensity of solar UV rays.
Temperature Degrees Celsius Ambient temperature.
Humidity Percent The amount of water vapor present in the air, as a percent

of the maximum that the air could hold at the same tem-
perature.

Cloud cover Percent Percent of the sky covered by clouds.
Wind speed meters per second Speed of the wind.

Image occlusion Percent Percent of pixels taken by dynamic objects in the scene.
LiDAR occlusion Percent Percent of LiDAR points taken by dynamic objects in the

scene.
Construction Percent Percent of image pixels that correspond to active construc-

tion elements.

Table 7.2: Semantic labels in
Pit30M. We provide these labels to
help researchers categorize and under-
stand the performance of localization
algorithms.

7.4 Case Study: Benchmarking Large-Scale Global Localiza-
tion

We turn our attention to benchmarking retrieval-based localization
approaches. Formally, let Z be either an image or LiDAR sweep point
cloud, let G be the GPS pose, and y the position of the SDV we are
trying to infer.

In the retrieval localization setting, we start from a dataset of pre-
localized sensor observations, and represent each full sensor reading
as a D-dimensional vector z = f(Z) ∈ RD, to obtain a database of
vector-pose pairs D = {(z1, y1), (z2, y2), . . . , (zn, yn)}. Given an online

https://darksky.net

learning rich representations for robot state estimation 100

(query) sensor reading Zq, we first compute its global feature represen-
tation zq = f(Zq) and infer the current pose via (high-dimensional)
nearest neighbor search:

ẑ = argmin
zi

∥zq − zi∥22 , (7.1)

outputting the pose associated with the nearest dataset descriptor
ẑ. Since each observation is associated with a single vector zi, the
obtained pose is expressed in a global coordinate frame.

We now introduce a couple of simple yet effective retrieval convolu-
tional networks for computing the embedding vectors z. By leveraging
the supervision provided by our dataset, we show that strong convo-
lutional backbones with simple pooling schemes can match the state
of the art in image and LiDAR retrieval at the time of publication.
This allows us to showcase the importance of our data and the gains
brought about by its scale. This can give us insights into the state of
the art of retrieval-based localization for robotics.

Learning for retrieval. We rely on deep convolutional networks
trained with a standard triplet loss, common in the retrieval literature:

Lretrieve = max {d(a, p)− d(a, n) +m, 0} , (7.2)

where d(·, ·) is the Euclidean distance function and the triplet (a, p, n)
consists of three latent, ℓ2-normalized embeddings produced by our
embedding function f(Z). In this context, a is an “anchor” descriptor,
p is a “positive” descriptor, and n is a “negative” descriptor. We build
our triplets such that the geo-location of the positive image is closer to
the anchor than the negative image by a pre-defined margin of at least
m = 0.5 in embedding feature space. In our experiment, we consider
sensor readings within one meter to be positives and within two to
four meters to be negatives; notice that this fine-grained distinction is
enabled by the accurate ground truth provided by our dataset.

We also ensure that the heading angle of the three images is within
a range of 30◦, so the images have overlapping fields of view. Finally,
we ensure that the positive and negative samples do not come from
the same trip as the anchor, which encourages the learned represen-
tations to be invariant to factors such as time of day, weather, and
dynamic objects in the scene. We collect a triplet for each image in
the dataset and learn f(·) via backpropagation. We implement f in
practice as a ResNet-50 (K. He et al. 2016).

GPS + retrieval. We also consider using GPS to restrict the
search area. This is a more realistic scenario in the context of self-
driving, yet it is less studied in the literature. Here, we collect a set of
embeddings located within τ meters from the GPS reading, where τ

is a tunable hyperparameter that we set based on the empirical error

learning rich representations for robot state estimation 101

(a) Raw point cloud (b) Plane removal and
coarse voxelization

(c) BEV voxelization (d) Ground
intensity

Figure 7.3: LiDAR representations
benchmarked in this work. (a)
Raw point cloud (not used by any
method). (b) Point cloud after ground
plane removal and downsampling to
4,096 points (Uy and Lee 2018; W.
Zhang and Xiao 2019; Z. Liu et al.
2019). (c) BEV voxelization with
intensities. We use the latter as input
to CNNs.

of our GPS measurements9. This filtering can be done efficiently with 9 We set τ = 20m in our main results,
which is a conservative yet effec-
tive error bound for an inexpensive
consumer-grade GNSS unit operating
in environments where satellite recep-
tion is present but potentially very
noisy, such as urban canyons.

a KD-tree, as both the database locations and the GPS readings are
low-dimensional. We then perform retrieval as in the global case, only
restricted to this region.

Bird’s-Eye View (BEV) representation. Although using CNNs
with images in the above formulation is straightforward, it is not im-
mediately clear how that can be achieved when the input is a point
cloud. For this, we introduce a conceptually simple representation that
achieves state-of-the-art results on publicly available benchmarks.
(Please see Chapter 7.5.5 for detailed experiments on the Oxford
Robotcar (Maddern et al. 2017) dataset.) We preprocess the raw
LiDAR point cloud as a BEV multi-channel representation by dis-
cretizing 3D space into an evenly-spaced voxelization of size l × w × h.
We use the forward-left-up convention, so x represents the direction
the vehicle is facing, y points to the left, and z denotes height. Cru-
cially, we treat the resulting voxelization as a 2D image by discretizing
the z-axis into c channels, allowing it to be plugged directly into stan-
dard 2D CNNs. This representation has proven useful for efficient
real-time LiDAR object detectors (Xiaozhi Chen et al. 2017; W. Luo,
Yang, and Urtasun 2018), and with our approach, we show that it also
produces competitive results on LiDAR retrieval. In contrast, previous
retrieval work has operated directly on the point clouds, which are
heavily downsampled for computational reasons (Uy and Lee 2018;
Z. Liu et al. 2019; W. Zhang and Xiao 2019). We visualize different
LiDAR representations in Fig. 7.3 and present additional implementa-
tion details for generating them below.

Oxford Robotcar dataset. We preprocess the LiDAR with a
resolution of 8 pixels/meter in width and height, in an area of 40m for
the x-axis and 25m in the y-axis centered approximately around the
position of the car in the middle frame. Along the z-axis, we discretize
10m into 16 channels, resulting in a BEV image with 320 × 200 ×
16 voxels. We obtain the intensity for each voxel by averaging the
intensities of all the LiDAR points within the voxel. Finally, we pass
these BEV images through a standard ResNet-50 architecture (K. He

learning rich representations for robot state estimation 102

et al. 2016), except that we use max- instead of average-pooling in the
final layer.

Pit30M dataset. We use different parameters in this dataset, as
the LiDAR sensor produces a 360◦ point cloud around the car with a
larger reach than the 2D sensors used in the Oxford dataset. The car
itself casts a large shadow in the point cloud, which induces further
domain shift. We discretize an area of 200m in the x-axis and 125 m
in the y-axis, with a resolution of 2.4 meters per pixel. The area is
centered around the vehicle. We discretize 3.2 meters in the z-axis into
16 channels. We use a ResNet-50 backbone (K. He et al. 2016) with
average pooling and follow the training procedure described earlier in
this chapter.

7.5 Case Study: Experiments

7.5.1 Evaluation Protocol

We split Pit30M in terms of different trips. This partition protocol
suits the self-driving scenario well, where a fleet typically maps the
drivable areas beforehand, but new trips face changes in visual appear-
ance and new dynamic objects on the road. We randomly select 941
trips for training, 134 for validation, and 268 for testing. We further
select 10,000 random query sensor readings from the test partition
to report our final localization metrics. We report the percentage of
correctly localized queries for increasing distance ranges. This results
in a monotonically increasing curve for increasing distance, with a
hypothetical perfect localizer having a performance of 100 for every
distance value.

7.5.2 Benchmarked methods

Camera-based methods. From classical methods, we consider
SIFT-based VLAD (Jégou et al. 2011) and DenseVLAD (Torii, Arand-
jelovic, et al. 2015), a variant of VLAD specifically designed for very
dense datasets with high visual variability. For these two methods, we
learn the visual vocabulary on a subset of 5M images from the training
set and use 128 SIFT clusters.

In VLAD, following the same pipeline design as the authors, we
detect keypoints using a Hessian-based affine-invariant detector (Miko-
lajczyk et al. 2005) and describe them using SIFT descriptors. We
build the visual vocabulary using k-means clustering and aggregate
fixed-dimension VLAD descriptors as described in the original paper.

DenseVLAD follows a similar approach, except that instead of
relying on a particular keypoint detector, we sample keypoints in
every image following a dense grid. Following the original paper, the

learning rich representations for robot state estimation 103

DenseVLAD descriptors are sampled every two pixels, using patch
sizes of 16, 24, 32, and 40 pixels. For both VLAD and DenseVLAD,
we use 128 visual words learned on a subset of 5M of the training set
features to compute the descriptors, which are then projected to a
smaller dimension using PCA.

We also consider NetVLAD (Arandjelovic et al. 2016), a deep learn-
ing approach that uses VGG-16 convolutional feature maps as local
features, and adds a learnable VLAD-based pooling layer. We use the
TensorFlow implementation10 of (Cieslewski, Choudhary, and Scara- 10 https://github.com/uzh-rpg/

netvlad_tf_openmuzza 2018). Since previous work (Sarlin et al. 2019) has relied on the
best model from (Arandjelovic et al. 2016) trained on Pittsburgh11 for 11 NetVLAD implementation: https:

//www.di.ens.fr/willow/research/
netvlad/. The Pittsburgh (Pitts250k)
is from (Torii, Sivic, et al. 2015).

global localization, we also benchmark this pre-trained network out-of-
the-box on our dataset to provide context about the performance of a
strong baseline in the field. We call this method NetVLAD-OOB.

LiDAR-based baselines. We consider PointNet-Max (Qi, Su, et
al. 2017), PointNetVLAD (Uy and Lee 2018), and PCAN (W. Zhang
and Xiao 2019) and train them on the Pit30M dataset. We use the
publicly-available implementations of PointNetVLAD12 (Uy and Lee 12 https://github.com/mikacuy/

pointnetvlad2018). We also implemented our own version of PCAN (W. Zhang
and Xiao 2019). Note that we do not evaluate the state-of-the-art
LPD-Net (Z. Liu et al. 2019) on Pit30M due to the lack of a public
implementation. However, as shown in Chapter 7.5.5, benchmarking
on the Oxford datasets shows that our BEV + ResNet50 method is
competitive with this strong baseline.

7.5.3 Results

Quantitative results. We show the results of our retrieval-based
benchmark in Fig. 7.4 and detailed results in Fig. 7.3. Regarding
image retrieval, while VLAD is outperformed by both DenseVLAD
and NetVLAD–OOB, the differences between the hand-crafted Den-
seVLAD and deep NetVLAD are rather small, and no clear winner
emerges. Our image-based ResNet50 baseline performs on par with
NetVLAD. In LiDAR retrieval, BEV emerges as the best method
overall, outperforming all its image counterparts and other LiDAR
methods.

Qualitative results. We show some qualitative results for the
retrieval-based methods on Pit30M in Fig. 7.5. We focus on challeng-
ing queries featuring glare, low sun angles, snow, and rain. For exam-
ple, the second row shows a query with glare, where both ResNet and
NetVLAD manage to localize correctly, but DenseVLAD fails. The
bottom row shows an interesting example where snow makes LiDAR
highly reflective; however, all LiDAR methods are able to localize
within 5m.

https://www.di.ens.fr/willow/research/netvlad/
https://www.di.ens.fr/willow/research/netvlad/
https://www.di.ens.fr/willow/research/netvlad/

learning rich representations for robot state estimation 104

% within (metres) 0.25m 0.50m 1.0m 5.0m average median

GPS 0.4 1.7 6.2 73.7 4.20 3.40

Image-based methods
VLAD 8.59 20.01 33.44 51.40 2401.33 3.95
DenseVLAD 14.50 34.12 56.15 77.82 843.98 0.81
NetVLAD-OOB 13.85 32.47 55.27 82.38 476.33 0.84
NetVLAD 42.57 74.38 86.07 87.60 577.69 0.29
Resnet50 (Img) 45.40 78.51 90.39 91.87 418.64 0.27

GPS + VLAD 10.44 24.78 43.58 78.80 3.53 1.26
GPS + DenseVLAD 15.33 36.47 61.33 90.78 2.05 0.72
GPS + NetVLAD-OOB 14.47 33.88 58.24 90.87 2.05 0.77
GPS + NetVLAD 43.53 77.78 92.73 96.80 0.92 0.28
GPS + Resnet50 (Img) 45.74 79.79 93.49 97.06 0.86 0.27

LiDAR-based methods
PointNet Max 36.53 66.46 78.82 80.77 944.28 0.34
PointNetVLAD 51.60 83.29 91.89 93.16 322.85 0.24
PCAN 48.95 81.88 91.51 92.47 339.96 0.26
BEV + Resnet50 60.17 86.08 91.39 92.56 353.27 0.20

GPS + PointNet Max 37.73 70.03 86.70 91.95 1.78 0.32
GPS + PointnetVLAD 50.77 82.43 91.27 94.35 1.42 0.25
GPS + PCAN 48.43 80.77 90.63 93.39 1.55 0.26
GPS + BEV + Resnet50 59.38 84.88 91.25 93.74 1.51 0.21

Table 7.3: Detailed localization
results for retrieval-based ap-
proaches. We report the percent of
correct predictions within different
distance thresholds, and mean and
median over the entire query set.
Top: Image-based methods. Bottom:
LiDAR-based methods.

Figure 7.4: Performance of
retrieval-based methods. Left:
Image retrieval results. Right: LiDAR
retrieval results.

learning rich representations for robot state estimation 105

In Fig. 7.8–7.13, we show additional qualitative results with chal-
lenging conditions for localization, such as images with snow, rain, low
sun angle, and high occlusion. We also show some failure modes for
both images and LiDAR.

Resnet NetVLAD DenseVLAD BEV Resnet PNVLAD PCANQuery Figure 7.5: Qualitative results
under exhaustive search. Left:
Query. Middle: Image retrieval
method. Right: LiDAR retrieval
methods. The insets display the error
between the retrieved result and A
digital copy is recommended, and
zooming in is encouraged.

7.5.4 Analysis

We use the annotations provided by Pit30M to analyze our bench-
marking results. We focus on understanding our best-performing
methods, GPS+Resnet-50 (images) and GPS+BEV+Resnet-50 (Li-
DAR).

First, in Fig. 7.6 (left), we observe that large GPS errors tend to
cause large overall localization errors for both images and LiDAR.
This is unsurprising since we limit the search radius to 20m around
the GPS prediction. In Fig. 7.7, we show the pairwise Pearson cor-
relation coefficient between our labels and failure cases of image and
LiDAR retrieval (a query is considered a “failure” if its error exceeds

learning rich representations for robot state estimation 106

Figure 7.6: Examples of analysis
enabled by the Pit30M meta-
data. Left: GPS error correlates with
both image and LiDAR localization
errors. Middle: Image localization
error vs. sun angle in the horizon
(altitude angle). We observe a smooth
error increase as the sun approaches
the horizon. Right: We plot LiDAR
queries with more than 1 meter of
error (failure cases) against LiDAR
occlusion. We observe a sharp spike
in error when between 15 and 20% of
points correspond to dynamic objects.

Figure 7.7: Pairwise correlations
between metadata in Pit30M
and error of different methods.
“Oracle error” stands for a hypothet-
ical method that can pick the best of
either image or LiDAR prediction for
each query.

learning rich representations for robot state estimation 107

2m), after removing cases where GPS error is above 20m. While we
observe that, for example, image error is correlated with image occlu-
sion, and image and LiDAR errors are highly correlated, this analysis
is somewhat limited, as it is only able to capture linear correlations.
Thus, we further examine image error vs. sun angle in Fig. 7.6 (mid-
dle); here, we observe increased errors during dawn and twilight and
no effect during daytime. We also examine LiDAR error vs. occlusion,
and observe a spike in errors when 15-20% of points are assigned to
dynamic objects, indicating that enhanced robustness to occlusion
has the potential to further boost the accuracy of the localizers we
studied.

Figure 7.8: Results with snow. The
second and the third examples show
NetVLAD and DenseVLAD struggling
with cross-seasonal matches.

Figure 7.9: Results with low sun
angle. The second example shows a
successful ResNet match, despite the
low sun clearly visible in the frame.

learning rich representations for robot state estimation 108

Figure 7.10: Results with rain. In
the second and third examples, we
see that the heavy rain in the query
affects the matching quality in the
image networks.

Figure 7.11: Results with occlu-
sion. The first example demonstrates
the difficulty in precise image retrieval
with few landmarks in the image.
The second example shows retrieval
failures across the image and LiDAR
networks, likely caused by the atypical
location and heavy vegetation.

Figure 7.12: Results with multiple
challenging modalities. The first
example shows a low-light query
with snow covering the ground, while
the last example shows both rain
and sunshine, which NetVLAD and
DenseVLAD have trouble handling.

learning rich representations for robot state estimation 109

Figure 7.13: Failure cases. The
second and third examples cause
failures in both LiDAR and image
retrieval, presumably due to the lack
of distinctive landmarks in the sensor
readings.

7.5.5 Oxford Robotcar

We benchmark different LiDAR representations on the Oxford Robot-
Car dataset (Maddern et al. 2017) which contains over 100 trips and
1,000 km driven in the city of Oxford, UK over the span of a year.
The vehicle carries two 2D LiDAR sensors that scan the scene as
the car moves through it. This creates a 3D point cloud, as shown
in Fig. 7.3. Unfortunately, the dataset does not provide accurate
ground truth for its sensor readings, as it only provides GPS loca-
tions13. Nonetheless, to the best of our knowledge, all previous work 13 As of 2023, the authors also re-

leased high-quality RTK ground truth
for the dataset (Maddern et al. 2020),
but it was not available at the time of
the Pit30M publication.

on LiDAR-retrieval-based localization has been benchmarked on this
dataset (Uy and Lee 2018; Z. Liu et al. 2019; W. Zhang and Xiao
2019).

We use the publicly available code by (Uy and Lee 2018) to gener-
ate the training and test partitions on the dataset14. For each session, 14 github.com/mikacuy/pointnetvlad
we aggregate the 2D LiDAR scans using vehicle dynamics to build a
full reference map, and associate them with global coordinates from
the GPS readings. Next, we generate train and test sub-maps by using
two geographically disjoint sets of reference maps, with each sub-map
containing all the LiDAR points collected over 20m of driving. For the
training set, positive sub-maps are defined as being at most 10m from
the query sub-map, while negative sub-maps are defined as being at
least 50m away from the query.

In-house datasets. Previous work has also typically benchmarked
on the three “in-house” datasets provided by (Uy and Lee 2018).
Unfortunately, only heavily downsampled point clouds are available
online. We contacted the authors asking for the full point clouds, but
were told that they are no longer available, so it was not possible to
benchmark our approach on them.

https://github.com/mikacuy/pointnetvlad

learning rich representations for robot state estimation 110

r@1% r@1 Inference

PointNet-Max (Charles R. Qi et al., 2016) 73.87 54.16 –
PointNetVLAD (Uy and Lee, 2018) 81.01 62.76 13.09 ms
P-CAN (W. Zhang and Xiao, 2019) 86.40 70.72 –
LPD-Net light (Z. Liu et al., 2019) 89.55 77.92 18.88 ms
LPD-Net (Z. Liu et al. 2019) 94.92 86.28 23.58 ms

BEV + Resnet50 (ours) 95.10 86.13 8.41 ms

Table 7.4: Comparison of LiDAR-
based retrieval methods on the
Oxford RobotCar dataset. Our
method achieves competitive results
at lower inference times. All times
benchmarked on an NVIDIA GTX
1080Ti GPU.

Evaluation protocol. We follow the standard evaluation proce-
dure for Oxford RobotCar, where a sub-map match must be within
25m of the query to be considered correct. As such, the dataset con-
tains 21,711 sub-maps for training and 3,030 sub-maps for evaluation.
We generate the train and test sub-maps by splitting the correspond-
ing reference maps at intervals of 10m and 20m, respectively. For the
baseline networks (Qi, Su, et al. 2017; Uy and Lee 2018; W. Zhang
and Xiao 2019), the raw point clouds are preprocessed by removing
the ground planes from each sub-map, and downsampled to 4,096
points using a coarse voxel filter. We follow previous work and report
average recall@1, and average recall@1%, meaning whether a cor-
rect match is retrieved as the top result, or within the top 1% of the
retrieved maps, respectively, averaged over all queries.

Training details. Our network is trained with a lazy quadruplet
loss (Uy and Lee 2018), and each batch consists of one anchor, two
positives, and 18 negative examples. Finally, we refresh the repre-
sentation cache used for hard negatives every 1,000 iterations. We
train our network using the Adam optimizer (Kingma and Ba 2015),
with an initial learning rate of 0.001, which we decrease by a factor of
ten every time the validation accuracy plateaus. Our network takes
roughly eight hours to train on a single 1080Ti GPU.

Results. We report results in Tab. 7.4. Our method is competitive
with the state-of-the-art LPD-Net (Z. Liu et al. 2019), while being
much faster at inference time. Notably, our method achieves this by
using a strong backbone but without relying on NetVLAD pooling
(unlike all our baselines). We believe that this result shows the effec-
tiveness of BEV + CNN representations for LiDAR-retrieval-based
localization.

7.6 Practical Matters: Releasing a Petabyte-Scale Dataset

Releasing a public dataset for the benefit of the research community
involves many labor-intensive steps beyond the initial data selection
and experimental validation. The dataset must be organized in an
easy-to-use structure, leveraging open standards; it should come with
an SDK15 which provides convenient access to the dataset, and care 15 Software Development Kit

learning rich representations for robot state estimation 111

must be taken to remove personally identifiable information from it.
Furthermore, despite not being discussed very much in academia,

promoting a dataset and proactively building a community around
it is perhaps just as important to its success as the actual content
or scale, especially in the modern era, where there are already many
computer vision datasets to choose from, whether they focus on robots
(Maddern et al. 2017; Geiger et al. 2013; Mao et al. 2021; Sun et al.
2020; Wilson et al. 2023; Pitropov et al. 2021; Burnett et al. 2023)
or not (Deng et al. 2009; Sattler et al. 2018; A. Bansal, Badino, and
Huber 2014).

This section will cover these challenges in depth, and discuss the
solutions we used for Pit30M. We hope that this information will be
helpful to other researchers or engineers interested in releasing a large-
scale public dataset.

It is worth noting that the Pit30M SDK, unlike this document,
is constantly evolving. For the latest information please refer to the
official website at pit30m.github.io.

7.6.1 Format and Structure

Finding the right balance between simplicity and complexity is critical
when designing a dataset format.

Simple designs typically involve individual files, such as images
stored under a directory tree. An index file specified in a standard
format such as CSV may be used to store information such as ground
truth, the dataset split to which a sample belongs, as well as meta-
data like the weather and camera ID. Further information, such as
robot calibration, may be stored as plain text files. Given its ubiquity,
NumPy may also be used to store non-image data, such as LiDAR,
thanks to its efficiency, openness, cross-language support, and flexibil-
ity.

More complex formats may also be used. For example, Zarr (Miles
et al. 2020) or tfrecord (Abadi et al. 2016) files could enable en-
hanced neural network training throughput by grouping the samples
into large chunks which may be quicker to read from a network file
systems than individual files. However, given the need to shuffle data
for ML training, the advantages of large chunks are relatively small.
Robotics-specific formats such as rosbag or the recent mcap format 16 16 mcap.dev
allow structured access to multi-modal time-series robot data but tend
to be very inefficient for random access, making them a poor choice for
datasets focused on training ML models.

While proprietary formats such as MATLAB’s .mat are yet another
option, they should be avoided because of their poor cross-platform
support and the need to purchase an expensive software license in

https://pit30m.github.io
https://mcap.dev/

learning rich representations for robot state estimation 112

order to access advanced functionality.
For Pit30M we opted to use a flat file structure, organizing the files

by driving log. As the Pit30M global localization benchmark involved
heavily downsampling the raw data, we built simple yet effective index
files to represent the “main” global localization dataset files. Each
index contains the GT pose, log ID, and path to an image or LiDAR
file.

The dataset is thus organized by the ID of the driving log, and each
log contains the raw sequential data from each sensor in a separate
directory. The dataset split indexes simply point to the specific sam-
ples we selected to make up the Pit30M global localization benchmark,
though users can always access the raw data directly using the SDK.
This can be useful for analyzing tasks like online localization, SLAM,
or novel view synthesis in the future.

The general structure of the dataset, which can be accessed directly
in its corresponding AWS S3 bucket even without a dedicated SDK
(more details to follow), is as follows:

pit30m/
├── ...
├── <log_uuid>/
│ ├── cameras/
│ │ ├── hdcam_02_starboard_front_roof_wide/
│ │ │ ├── index/
│ │ │ ├── index_v02.npz
│ │ │ ├── 000/
│ │ │ │ ├── 00000.day.webp
│ │ │ │ ├── ...
│ │ │ ├── ...
│ │ │ ├── nnn/
│ │ │ │ ├── nnn00.npz.lz4
│ │ │ │ ├── nnn01.npz.lz4
│ │ │ │ ├── ...
│ │ ├── hdcam_04_starboard_rear_roof_wide/
│ │ │ ├── ...
│ │ ├── hdcam_08_port_rear_roof_wide/
│ │ │ ├── ...
│ │ ├── hdcam_10_port_front_roof_wide/
│ │ │ ├── ...
│ │ ├── hdcam_12_middle_front_roof_narrow_left/
│ │ │ ├── ...
│ │ ├── hdcam_12_middle_front_roof_narrow_right/
│ │ │ ├── ...
│ │ ├── hdcam_12_middle_front_roof_wide/

learning rich representations for robot state estimation 113

│ │ │ ├── ...
│ ├── lidars/
│ │ ├── hdl64e_12_middle_front_roof/
│ │ │ ├── index/
│ │ │ ├── ...
│ │ │ ├── 000/
│ │ │ │ ├── 00000.npz.lz4
│ │ │ │ ├── ...
│ │ │ ├── ...
│ │ │ ├── nnn/
│ │ │ │ ├── nnn00.npz.lz4
│ │ │ │ ├── nnn01.npz.lz4
│ │ │ │ ├── ...
│ ├── all_poses.npz
│ ├── raw_calibration.yml
│ ├── raw_imu.npz.lz4
├── <log_uuid>/
│ ├── ...
├── ...

The LiDAR is stored as a self-describing NumPy file containing
N entries for the N points in a sweep. Both LiDAR and camera sub-
directories include indexes which associate each image or sweep with a
timestamp, some metadata like the shutter time, and the ground truth
pose of the SDV at that time17. Please refer to the SDK for detailed 17 Please note that the samples corre-

sponding to the held-out test set will
contain blank values instead of poses.

information on the structure of such an index. Chapter 7.3 provides
additional details on the image and LiDAR data incorporated into the
dataset.

We also group every 100 samples into their own sub-directory to
reduce the risk of slowdown associated with listing gigantic prefixes.

7.6.2 Hosting

Depending on the scale of a dataset, simply finding a way to make
the raw data available can be challenging. While large companies like
Google can easily afford to host these kinds of datasets, providing
access to such data can be much more difficult for small companies or
academic labs.

While simply hosting tarballs on a university server may work, if
the download speeds are very low, the likelihood of dataset adoption
drops as other researchers gravitate towards easier-to-use datasets.
Additionally, depending on the scale of the dataset, it may be de-
sirable to allow users to programatically download specific parts of
a dataset, for example, a “mini,” “medium,” and “full” version, to
suit their storage and compute budget. Most research projects do not

learning rich representations for robot state estimation 114

require the entire dataset.
Another option is to use a third-party hosting server, such as Ama-

zon’s S3. However, hosting 300 TB in AWS can cost tens of thousands
of dollars per month, especially when considering additional network
transfer costs. Fortunately, there are options for providing free access
to host an academic dataset, using programs such as AWS Open Data.
This is the program we selected for Pit30M given the sheer scale of the
dataset.

We applied for hosting under this program, and Pit30M was ac-
cepted with a maximum storage capacity of 300 TB. With the judi-
cious use of lossy image compression18, we were able to hit this goal 18 We found WebP with a quality set-

ting of 85 to provide the best balance
between decompression speed, PSNR,
and space. A detailed analysis of the
different trade-offs between major
image compression formats (and their
various implementations—libjpeg is
not the same as mozjpeg) is beyond
the scope of this chapter and could
probably take up several chapters on
its own. In practice, WebP is a good
compromise between decompression
speed, quality, and storage. In the
time since we generated the dataset,
a few new options, including JPEG-
XL and AVIF have started gaining
traction. We did not consider them
at the time, but they would be worth
looking into for future projects, es-
pecially since AVIF is likely to have
good hardware support on modern
computers. AVIF is the single-image
version of the AV1 codec. Please re-
fer to https://aomedia.org/ for more
information.

without removing any of the raw log data. Furthermore, by ensuring
our samples are compressed, we can also maximize the throughput of
reading the data at training time, eliminating the need to download
large PNGs, which can quickly become a bottleneck when training at
scale.

7.6.3 Anonymization

It is important to remove personally identifiable information from the
dataset. Because the dataset involves driving on public roads, we need
to ensure all sensitive information present in camera images, namely
faces and license plates, is anonymized appropriately by blurring.
None of the other modalities contained any sensitive information. The
LiDAR point clouds are much too coarse to allow faces or any sort of
writing to be recognized.

The anonymization process consists of two steps: detecting the
sensitive information, and removing it. For the former, we leveraged
per-frame object detection, while for the latter we relied on a strong
Gaussian blur19. 19 While naively blurring sensitive

elements interferes with image realism
and may limit applicability in detec-
tion tasks, we found the simplicity
of this approach appealing and the
downsides not too serious given the
dataset’s primary goal of benchmark-
ing global localization. Gaussian blur
is used for anonymization in many
commercial applications, including
Google Street View and datasets such
as A2D2 (Geyer et al. 2020).

While preparing the dataset, we identified the open-source Un-
derstand AI anonymizer20 as the most promising tool for detecting

20 github.com/understand-
ai/anonymizer

and blurring sensitive information due to its simplicity, high-quality
results, and easy-to-use API.

Nevertheless, as we continued working on generating the public
version of the dataset, we realized that, while effective, this model was
much too slow, taking over 100 ms to process at 1080p on an NVIDIA
RTX 3090 GPU. Furthermore, the package was unmaintained and
relied on a relatively old version of TensorFlow. To complicate things
further, the object detector and object blurring components were
tightly coupled, and the actual model architecture was obfuscated.
This made the library challenging to modify or optimize.

To this end, following (Fähse 2021) we distilled the off-the-shelf Un-
derstand AI model into a highly optimized YOLOv5 (Redmon et al.

https://aws.amazon.com/opendata/
https://aomedia.org/
https://github.com/understand-ai/anonymizer
https://github.com/understand-ai/anonymizer

learning rich representations for robot state estimation 115

2016; Jocher 2020) architecture which we compiled into a TensorRT
engine21. After several iterations we reached a model which ran 30× 21 While torchscript compilation

provided some modest benefits,
converting our model to an fp16
TensorRT engine constituted the most
significant performance uplift.

faster than the baseline, taking us from 7.4 to 250 FPS on an AWS
instance equipped with an A10G (RTX 3090 equivalent) GPU.

Implementation details. We used the yolov5m architecture vari-
ant trained with the hyp.scratch-high.yaml config for 70 epochs.
We performed inference at 1280 × 800 and rescaled the boxes to the
original image size of 1920×1200. In practice, we found this to be per-
fectly adequate, while also being computationally efficient. Any faces
and plates missed by the lower resolution model typically span only a
handful of pixels in size in the original images, making them illegible
and thus harmless from a privacy point of view.

We likewise hand-implemented a GPU-accelerated Gaussian Blur
operator in PyTorch, which allowed us to reduce the time spent ap-
plying a Gaussian blur to a full-resolution image from 107 ms (CPU,
OpenCV) to 12.5 ms (GPU, naive implementation), and finally to
1.9 ms (GPU, separable filter + TorchScript). The time also includes
feathering the edges of the blur mask in order to avoid jarring borders.

7.6.4 Dataset SDK

We also provide a Python SDK for interacting with the dataset. It
includes a command-line tool for exploring the data, log readers that
help deal with the log indexes, and a few simple PyTorch dataloaders
that are compatible with streaming from S3.

Note that while the SDK provides many convenient features for
dealing with Pit30M, it is not required since the files follow a simple
and relatively flat structure which can be accessed with any S3 library
or the standalone S3 command-line suite provided by AWS22. Neither 22 https://docs.aws.amazon.com/cli/

option requires any sort of AWS account.
Anyone can install the SDK using Python’s pip package manager as

pip install pit30m. This allows the Pit30M utilities to be used from
user scripts, like training or visualization code, or from a command-
line interface (CLI) as python -m pit30m.cli. Please refer to the
project website23 or the SDK repository 24 for specific code docu- 23 pit30m.github.io

24 github.com/pit30m/pit30mmentation and examples of use cases.

7.7 Conclusion

In this chapter, we introduced Pit30M, a novel large-scale dataset for
image and LiDAR localization, and studied retrieval-based methods
in the context of self-driving cars. Our dataset provides extensive
metadata and sub-meter ground truth and allows researchers to study
accurate global localization at city scale. Furthermore, we saw that

https://docs.aws.amazon.com/cli/
https://pit30m.github.io
https://github.com/pit30m/pit30m

learning rich representations for robot state estimation 116

this dataset can be applied to a wide range of other research tasks,
such as vision foundation models, object discovery, and novel view
synthesis. We provided an initial benchmark with multiple methods
for visual and LiDAR localization, and in the process, showed that
strong modern convolutional backbones perform remarkably well in
this scenario. Our analysis also hints at future research directions
using multi-sensor fusion and highlights challenging scenarios for local-
ization. Our dataset and metadata are available on the Pit30M project
website.

https://pit30m.github.io
https://pit30m.github.io

117

8
Conclusions and Future Directions

When I learned the meaning
of “I” and “me” and found
that I was something, I began
to think.

Hellen Keller

Autonomous vehicles have the potential to change our lives for the
better by reducing logistics costs, improving access to transportation,
and making travel safer. However, in order to accomplish this, every
component of an autonomous robot needs to operate robustly in a
wide range of environments. In this thesis, we covered a line of work
studying the robustness of robotic systems at the module and system
levels through the lens of localization. To conclude the dissertation,
we summarize the key contributions together with their strengths and
limitations and discuss future work.

8.1 Summary

This thesis focused on improving robot localization systems by analyz-
ing their limitations at both the module and system levels. Through
this endeavor, we developed multiple insights that apply to a wide
range of problems in robotics and machine learning.

In Chapter 3, we began by proposing a simple yet effective way to
localize an SDV within a known map by matching semantic informa-
tion perceived online to similar cues stored in a map. This approach
was scalable and lightweight as it leveraged information already neces-
sary for autonomous driving, such as the locations of lanes and traffic
signs. Nevertheless, the method still suffered from drift, particularly
longitudinally, due to the sparsity of observations.

We tackled this limitation in Chapter 4 by proposing a way to
leverage dense map information by learning the localization matching
function directly. By eschewing the need to extract human-curated

learning rich representations for robot state estimation 118

features such as lane lines and instead using all the information
present in the sensor data while relying on a neural network to in-
fer the most salient localization cues on its own, we ended up with a
more robust solution. However, in spite of its improved accuracy, this
approach sacrificed scalability by relying on dense map imagery, which
can take up several terabytes in storage, driving up costs and slowing
down operations.

We addressed the storage challenges in Chapter 5 by observing
that the matching functions learned from data tended to focus on a
specific set of sparse cues, which they identified as being reliable and
effective for localization. This led to an enhancement brought about
by introducing a novel binary compression module and adding sparsity
and compressibility priors into the training framework of the LiDAR
matcher. This allowed the network’s emergent sparse perception to
be translated into real storage space gains, enabling us to reduce map
size by an order of magnitude compared to off-the-shelf lossy codecs
like JPEG or WebP without sacrificing localization performance. The
results from this chapter highlight the importance of task awareness
when designing compression algorithms for data from a specialized
domain, such as LiDAR map imagery.

In Chapter 6, we took a step back and analyzed localization per-
formance in the context of an entire robotic system. Given their
importance in associating sensor observations with prior map data,
we analyzed the accuracy requirements of localization systems. We
showed that map-based perception systems tend to be robust to trans-
lation errors in their pose but are much more sensitive to angular
errors. As the range of robotic sensors evolves and improves, this issue
will continue to become more salient as rotational misalignment in-
creases as a function of distance. Following our analysis, we proposed
a multi-task solution that can run LiDAR localization as a part of a
perception neural network, giving it the ability to correct a wide range
of localization errors with minimal computational overhead.

Finally, in Chapter 7, we shifted our focus from online to global
localization, and studied the importance of large and diverse datasets
through its lens. We introduced a new public dataset called Pit30M
and used it to analyze global localization for self-driving cars. We
observed that as the scale of a dataset increased, the specific architec-
tural differences of global localization models that were state of the art
at the time became less important. Recent studies have confirmed the
potential of relatively simple architectures and large quantities of data
in a wide range of tasks, including natural language processing (Brown
et al. 2020) and visual representation learning (Radford et al. 2021).

While all chapters focused on applications in autonomous driv-
ing, many of the insights apply to other types of robots and indeed

learning rich representations for robot state estimation 119

to other areas of machine learning. For example, the idea of blending
classic graphical models with deep representations has a wide range
of applications, from planning (Y. Hu et al. 2023) and game playing
(Schrittwieser et al. 2020) to protein folding (Jumper et al. 2021)
and catalyst discovery (Tran et al. 2023). The idea of task-specific
compression is likewise powerful given the vast amounts of data pro-
duced by most computer systems, whether they are robot drivers or
sales platforms; most of this data will never be seen by a human, but
rather, it will get processed by a specific set of algorithms. Why not
optimize and compress the representations accordingly? Reducing
information to the absolute minimum required to solve a task, bypass-
ing a human’s notions of “fidelity,” also has numerous applications in
privacy-focused and federated ML, where only key aspects of complex
data points need to be shared with the learning process.

The system-wide analysis we performed in Chapter 6 highlighted
the importance of going beyond traditional task-level benchmarks and
studying the impact of a model on the overall system performance. In
recent years, there has been a constant growth in the number of ap-
plications integrating machine learning models at some level, and this
trend has only accelerated with the explosion in popularity LLMs such
as ChatGPT and Llama2 have experienced. From autonomous robots
(Mao et al. 2023) to customer support, large models are becoming
critical components of more and more applications. Many times, a
model which performs well on a set of standard benchmarks is inte-
grated into a broader system where it ends up performing poorly, per-
haps due to domain shift or due to certain assumptions present in the
standard benchmarks no longer holding (J. Li et al. 2024). Chapter 6
presents a methodology for establishing a system-wide benchmark and
analyzing system-level metrics as a function of a single module (SDV
localization in our case), which can be applied to complex real-world
production systems in order to validate their resilience.

While LiDAR was the primary sensor in most of the presented ap-
plications, the insights in this thesis can likewise be applied to camera
and RADAR systems, e.g., by using BEV unprojection for monocular
camera images (Philion and Fidler 2020; W. Yang et al. 2021) or by
explicitly leveraging depth information inferred from stereo (Lipson,
Teed, and Deng 2021). Likewise, BEV matching techniques also ap-
ply to RADAR data (Barnes, Weston, and Posner 2019; Weston et al.
2022).

8.2 Future Work

In spite of recent advances, the task of autonomous driving is still far
from solved. Many open challenges remain at the intersection of areas

learning rich representations for robot state estimation 120

as diverse as computer vision, systems engineering, safety, and ethics.
We can distill the limitations discussed throughout this thesis into

several avenues that are promising for future research. These are ex-
amples of areas that are worth exploring in order to advance along the
path towards safe, effective, inclusive, and scalable robotic agents.

Multi-sensor, low-cost perception. While the majority of appli-
cations presented in this thesis have focused on LiDAR as the primary
sensors, experiments such as those in Chapter 3 or Chapter 7 have
demonstrated the potential of multi-sensor or camera-based methods.
The use of multiple sensors brings about redundancies that can im-
prove safety. Cleverly combining multiple lower-cost sensors (such as
consumer-grade cameras and RADARs) can also lead to systems which
perform on par with those leveraging much more expensive ones. One
substantial barrier to adopting intelligent robots in our daily lives is
the fact that many effective applications still require costly sensors.
For example, most autonomous vehicles rely on LiDAR sensing, and
while high-resolution LiDAR sensors have seen substantial cost re-
ductions over the past decade, they are still not affordable enough to
deploy everywhere1. 1 While several autonomous driving

companies, such as Waymo (Verghese
2019) and Aurora (Aurora 2021), have
gone the way of developing and man-
ufacturing LiDAR sensors in-house,
this approach is only applicable to
large, well-established companies due
to the significant required amounts of
upfront capital investment.

Many exciting new developments, such as event cameras (Gallego et
al. 2020; Low and Lee 2023) and compact solid-state LiDARs (Velo-
dyne Lidar, Inc. 2021), have the potential to increase the reach of
automated systems by reducing costs. Several of these techniques can
also improve system performance in general. For example, event cam-
eras, also known as dynamic vision sensors, can help improve reaction
times due to their extremely low latencies, leading to improved safety
by allowing robots to react to hazards more quickly than other sen-
sors, such as LiDAR, would allow (Gallego et al. 2020; Gehrig and
Scaramuzza 2024). However, many of these sensors are still far from
seeing wide adoption2, and most research in autonomous driving is 2 As of March 2024, there have been

no further announcements regarding
the Velabit sensor, and while there
are no official announcements, the
project appears to have been canceled
(example discussion).

still overwhelmingly focused on spinning LiDARs and cameras (Sun
et al. 2020; Y. Hu et al. 2023; Caesar et al. 2020; Mao et al. 2021).
Nevertheless, as robotics researchers, we need to continue striving to
broaden our horizons and explore the potential of less-beaten sensing
paths: the rewards are bound to be worth it!

8.2.1 Simulation

Two major limitations still constrain the development of robotic sys-
tems, even when using the largest and best-curated datasets. First,
any dataset collected in the real world will be unable to capture the
full distribution of possible appearances and behaviors a driver could
encounter in the real world. Second, as robotic systems need to inter-
act with the world, the use of a static dataset means such a system

https://www.reddit.com/r/LiDAR/comments/zf5xqe/is_the_velodyne_velabit_ever_going_to_be_released/

learning rich representations for robot state estimation 121

would never receive feedback from the environment on its actions,
beyond what static labels provide. In other words, the robot would
lack embodiment: development on static datasets can only proceed
in open loop. This limitation can be alleviated by real-world testing,
but that brings its own host of challenges, such as increased costs,
slow iteration speed, and safety concerns3. Furthermore, recent re- 3 Even in the presence of a human

safety driver, testing early software
on a real SDV in scenarios involving
other vehicles poses some collision
risk. Furthermore, physical track
testing cannot involve scenarios where
a test failure is known to cause a
collision. This excludes many critical
corner cases, such as aggressive cut-
ins or lead-actor braking.

search has shown that metrics computed in open loop are not pre-
dictive of closed-loop (i.e., real-world) performance (Codevilla et al.
2018; Dauner et al. 2023). Therefore, we need a way to synthesize
and potentially search for challenging events, interactions, and object
appearances.

At the same time, the robotic system being trained and evaluated
(e.g., the SDV software stack) must be able to interact with its envi-
ronment, affecting its and other agents’ states in a continual closed-
loop feedback cycle.

Simulation can accomplish both of these goals. First, a simulator
can be used for synthetic data generation tuned to cover a broader
range of challenging object appearances, backgrounds, and scenar-
ios than even the best-curated real dataset. Second, we can use the
simulator for closed-loop evaluation and training, which bypasses the
embodiment problem.

As an example, consider the analysis from Chapter 6.3.1, which
relied on open-loop evaluation. The open-loop nature of the evaluation
limited the time horizon of our analysis, as unrolling the planner and
the environment for too long can cause very unrealistic results due
to the simulated traffic’s inability to react to the SDV. By using a
high-fidelity closed-loop simulator, we could increase the realism of
the analysis, e.g., by evaluating much longer time horizons in order to
uncover more subtle issues brought about by localization errors.

While simulation brings its own set of challenges, like the need to
reproduce real-world environments in high fidelity, render realistic
sensor observations, simulate human-like reactive actors, and gener-
ally quantify and minimize the sim-to-real domain gap, recent work
(Mildenhall et al. 2021; Zyrianov, Zhu, and Wang 2022; Kerbl et al.
2023; Gulino et al. 2024) has shown tremendous progress in all these
areas. Further research has explored additional ways of improving the
realism (Manivasagam et al. 2023), flexibility (Murthy et al. 2020),
and especially the scalability (Petrenko et al. 2021; Shacklett et al.
2023; Gulino et al. 2024) of simulators. By enriching our simulators,
we can dramatically improve the speed of iteration in robotics without
sacrificing safety.

Mixed and augmented reality simulation. At the same time,
there is still a system domain gap between running in the real world
and even the highest-end simulator. For example, most simulation

learning rich representations for robot state estimation 122

benchmarks and analysis papers highlight photo-realism and open-
loop perception fidelity (Manivasagam et al. 2023) but fail to discuss
the system design challenges, the importance of simulating system
dynamics, as well as the vast complexities associated with running
every component in real-time with low latency. Designing a feedfor-
ward network that runs in 100 ms is easy. Designing a system that
can handle sensor inputs, preprocess them, route them to multiple
GPUs, validate the outputs, then actuate a series of effectors at 10Hz
or faster, reliably, over tens of thousands of hours of operation is much
more challenging. While previous work has demonstrated the poten-
tial for pure sim-to-real generalization on specific tasks such as robot
locomotion (Hwangbo et al. 2019) by leveraging aggressive domain
randomization, safely generalizing system performance purely from
simulated data remains an open research question.

A promising avenue for approaching this set of challenges is by
bridging the gap between simulation and reality through vehicle-in-
the-loop or mixed-reality simulation (Zofka et al. 2018, 2023; Shen
et al. 2024). While vehicle-in-the-loop simulation typically refers to
replaying driving log data onboard an actual vehicle in order to re-
produce its computational setup perfectly, mixed reality simulation
takes this one step further, running simulation onboard a functioning
robot as it operates on a closed course, blending the simulated obser-
vations with the real sensor data. This can bring about the diversity,
safety, reproducibility, and, to a partial extent, scalability benefits of
pure simulation, combining them with the advantages of real-world
testing—real sensors, real onboard computers, real noise, and real
actuation.

Large-scale simulation. Much like scalability has benefitted
models in NLP and generative modeling (e.g., training on 1000s of
GPUs or TPUs), so too can it benefit robotic models that rely on
closed-loop simulation. However, the need for closed-loop evaluation
and training brings a unique set of challenges to traditional data-
parallel scaling paradigms. It is no longer enough to train a neural
network at scale—instead, it becomes necessary also to run large-scale
simulations in which a robot system can operate and receive feed-
back. This poses exciting software engineering challenges, as tasks like
physics simulation, traffic simulation, and sensor data rendering also
need to be performed in batch, on large-scale computer clusters. While
early work achieved promising results simulating lightweight environ-
ments such as Atari games4, autonomous driving simulation has much 4 The famous Atari 2600 had a 1.2

MHz processor, meaning that even
low-end modern computers can sim-
ulate Atari games tens of thousands
of times faster than real-time, thanks
to increased clock speeds, proces-
sor counts, and instruction-level
parallelism (Bellemare et al. 2013;
Petrenko et al. 2021).

higher requirements in terms of sensor rendering (photo realistic cam-
era rendering, LiDAR rendering, etc.), environment scale (e.g., entire
cities), and actor behaviors. Recently released simulators (Petrenko et
al. 2021; Shacklett et al. 2023; Gulino et al. 2024) focus on batched

learning rich representations for robot state estimation 123

processing for tasks like graphics rendering (Petrenko et al. 2021) or
actor behavior simulations (Gulino et al. 2024), making full use of
GPU acceleration to achieve large throughput. For example, Mega-
verse (Petrenko et al. 2021) can simulate complex 3D environments
at over 100k FPS on a single system equipped with a consumer-grade
Nvidia RTX 3090 GPU, albeit with relatively simple graphics. Ad-
vancing this line of research and designing robotic systems that can
learn in batched environments and then transfer the knowledge to
the real world effectively is critical for the development of practical
autonomous robots.

8.3 Outlook

The field of autonomous driving is full of challenging problems, and
we still have many years ahead of us before we can call them solved.
Nevertheless, the payoff for solving them will be nothing short of a
technological revolution. In addition to their applications in mobil-
ity, advances in AI capable of unlocking safe autonomous driving at
scale can transfer to many other fields, such as automated agriculture,
search and rescue, space exploration, autonomous manufacturing, and
surgical robotics. This thesis only scratched the surface of a fraction of
the problems that we need to solve to reach our goals. I am neverthe-
less profoundly grateful for having had the chance to build my skills as
a scientist by working in this area, and I am excited to see what the
future of robotics holds!

learning rich representations for robot state estimation 124

125

Bibliography

Abadi, Martı́n, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. “TensorFlow:
A System for Large-Scale Machine Learning.” In 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 16), 265–83.

Agarwal, Sameer, Noah Snavely, Ian Simon, Steven M Seitz, and
Richard Szeliski. 2009. “Building Rome in a day.” In ICCV.

Aghili, Farhad, and Chun Yi Su. 2016. “Robust relative navigation by
integration of ICP and adaptive Kalman filter using laser scanner
and IMU.” TMECH. https://doi.org/10.1109/TMECH.2016.2547905.

Agro, Ben, Quinlan Sykora, Sergio Casas, Thomas Gilles, and Raquel
Urtasun. 2024. “UnO: Unsupervised Occupancy Fields for Percep-
tion and Forecasting.” In CVPR, 14487–96.

Agro, Ben, Quinlan Sykora, Sergio Casas, and Raquel Urtasun. 2023.
“Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving.” In CVPR, 1379–88.

Alet, Ferran, Tomás Lozano-Pérez, and Leslie P Kaelbling. 2018.
“Modular Meta-Learning.” In CoRL.

Amini, Alexander, Guy Rosman, Sertac Karaman, and Daniela Rus.
2019. “Variational End-to-End Navigation and Localization.” In
ICRA.

Antonante, Pasquale, Sushant Veer, Karen Leung, Xinshuo Weng,
Luca Carlone, and Marco Pavone. 2023. “Task-Aware Risk Estima-
tion of Perception Failures for Autonomous Vehicles.”

Arandjelovic, Relja, Petr Gronat, Akihiko Torii, Tomas Pajdla, and
Josef Sivic. 2016. “NetVLAD: CNN Architecture for Weakly Su-
pervised Place Recognition.” In CVPR, 5297–307.

Artuñedo, Antonio, Jorge Villagra, Jorge Godoy, and Maria Dolores
Del Castillo. 2020. “Motion Planning Approach Considering Local-
ization Uncertainty.” IEEE Transactions on Vehicular Technology
69 (6): 5983–94.

Aurora. 2021. “The Power of FMCW Lidar + Scale: Why Acquiring
OURS Lidar Unlocks the Commercialization of the Aurora Driver.”

https://doi.org/10.1109/TMECH.2016.2547905

learning rich representations for robot state estimation 126

2021. https://blog.aurora.tech/progress/the-power-of-fmcw-
lidar-and-scale-acquiring.

Bai, Min, G. Mattyus, N. Homayounfar, S. Wang, SK. Lakshmikanth,
and Raquel Urtasun. 2018. “Deep Multi-Sensor Lane Detection.”
In IROS.

Bai, Min, and Raquel Urtasun. 2017. “Deep Watershed Transform for
Instance Segmentation.” In CVPR.

Bailey, Tim, and Hugh Durrant-Whyte. 2006. “Simultaneous Local-
ization and Mapping (SLAM).” Update 13 (September): 108–17.
https://doi.org/10.1109/MRA.2006.1678144.

Balle, Johannes, Valero Laparra, and Eero P. Simoncelli. 2016. “End-
to-End Optimization of Nonlinear Transform Codes for Perceptual
Quality.” 2016 Picture Coding Symposium (PCS). https://doi.org/
10.1109/pcs.2016.7906310.

Balntas, Vassileios, Karel Lenc, Andrea Vedaldi, and Krystian Miko-
lajczyk. 2017. “HPatches: A Benchmark and Evaluation of Hand-
crafted and Learned Local Descriptors.” In CVPR, 5173–82.

Bansal, Aayush, Hernán Badino, and Daniel Huber. 2014. “Under-
standing How Camera Configuration and Environmental Con-
ditions Affect Appearance-Based Localization.” In IV, 800–807.
IEEE.

Bansal, Mayank, and Kostas Daniilidis. 2014. “Geometric Urban Geo-
Localization.” In CVPR.

Bansal, Mayank, Alex Krizhevsky, and Abhijit Ogale. 2019. “Chauf-
feurNet: Learning to Drive by Imitating the Best and Synthesizing
the Worst.” In RSS.

Barfoot, Timothy D. 2024. State Estimation for Robotics. Cambridge
University Press.

Barnes, Dan, Rob Weston, and Ingmar Posner. 2019. “Masking by
Moving: Learning Distraction-Free Radar Odometry from Pose
Information.” In CoRL.

Bârsan, Ioan Andrei, Peidong Liu, Marc Pollefeys, and Andreas
Geiger. 2018. “Robust Dense Mapping for Large-Scale Dynamic
Environments.” In ICRA, 7510–17. IEEE.

Bay, Herbert, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
2008. “Speeded-up Robust Features (SURF).” Computer Vision
and Image Understanding 110 (3): 346–59.

Bellemare, Marc G, Yavar Naddaf, Joel Veness, and Michael Bowl-
ing. 2013. “The Arcade Learning Environment: An Evaluation
Platform for General Agents.” Journal of Artificial Intelligence
Research 47: 253–79.

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. 2013. “Esti-
mating or Propagating Gradients Through Stochastic Neurons for
Conditional Computation.” arXiv Preprint arXiv:1308.3432.

https://blog.aurora.tech/progress/the-power-of-fmcw-lidar-and-scale-acquiring
https://blog.aurora.tech/progress/the-power-of-fmcw-lidar-and-scale-acquiring
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1109/pcs.2016.7906310
https://doi.org/10.1109/pcs.2016.7906310

learning rich representations for robot state estimation 127

Berner, Christopher, Greg Brockman, Brooke Chan, Vicki Cheung,
Przemysław Dębiak, Christy Dennison, David Farhi, et al. 2019.
“Dota 2 with Large Scale Deep Reinforcement Learning.” arXiv
Preprint arXiv:1912.06680.

Bernreiter, Lukas, Lionel Ott, Juan Nieto, Roland Siegwart, and Cesar
Cadena. 2021. “PHASER: A Robust and Correspondence-Free
Global Pointcloud Registration.” IEEE Robotics and Automation
Letters 6 (2): 855–62.

Berrou, Claude, Alain Glavieux, and Punya Thitimajshima. 1993.
“Near Shannon Limit Error-Correcting Coding and Decoding:
Turbo-Codes. 1.” In Proceedings of ICC’93-IEEE International
Conference on Communications, 2:1064–70. IEEE.

Biber, Peter, and Wolfgang Straßer. 2003. “The Normal Distributions
Transform: A New Approach to Laser Scan Matching.” In IROS.

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bern-
hard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, et al.
2016. “End to End Learning for Self-Driving Cars.” arXiv Preprint
arXiv:1604.07316.

Brachmann, Eric, Tommaso Cavallari, and Victor Adrian Prisacariu.
2023. “Accelerated Coordinate Encoding: Learning to Relocalize in
Minutes Using RGB and Poses.” In CVPR, 5044–53.

Brachmann, Eric, Alexander Krull, Sebastian Nowozin, Jamie Shotton,
Frank Michel, Stefan Gumhold, and Carsten Rother. 2017. “DSAC
- Differentiable RANSAC for Camera Localization.” In CVPR.

Brachmann, Eric, Frank Michel, Alexander Krull, Michael Ying Yang,
Stefan Gumhold, et al. 2016. “Uncertainty-Driven 6d Pose Estima-
tion of Objects and Scenes from a Single RGB Image.” In CVPR.

Brachmann, Eric, and Carsten Rother. 2018. “Learning Less Is More-
6d Camera Localization via 3d Surface Regression.” In CVPR.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, et al. 2020.
“Language Models Are Few-Shot Learners.” In NeurIPS, 1877–
1901. PMLR.

Brubaker, Marcus A, Andreas Geiger, and Raquel Urtasun. 2013.
“Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization.”
In CVPR, 3057–64.

Buciluǎ, Cristian, Rich Caruana, and Alexandru Niculescu-Mizil.
2006. “Model Compression.” In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining.

Bujanca, Mihai, Paul Gafton, Sajad Saeedi, Andy Nisbet, Bruno
Bodin, Michael FP O’Boyle, Andrew J Davison, et al. 2019.
“SLAMBench 3.0: Systematic Automated Reproducible Evalu-
ation of SLAM Systems for Robot Vision Challenges and Scene

learning rich representations for robot state estimation 128

Understanding.” In ICRA.
Burnett, Keenan, David J Yoon, Yuchen Wu, Andrew Z Li, Haowei

Zhang, Shichen Lu, Jingxing Qian, et al. 2023. “Boreas: A Multi-
Season Autonomous Driving Dataset.” IJRR 42 (1-2): 33–42.

Caesar, Holger, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice
Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Bal-
dan, and Oscar Beijbom. 2020. “nuScenes: A Multimodal Dataset
for Autonomous Driving.” In CVPR.

Cai, Xudong, Yongcai Wang, Zhe Huang, Yu Shao, and Deying Li.
2024. “VOLoc: Visual Place Recognition by Querying Compressed
Lidar Map.” In ICRA.

Camposeco, Federico, Andrea Cohen, Marc Pollefeys, and Torsten
Sattler. 2019. “Hybrid Scene Compression for Visual Localization.”
In CVPR.

Cao, Bingyi, Andre Araujo, and Jack Sim. 2020. “Unifying Deep
Local and Global Features for Efficient Image Search.” In ECCV.

Carlevaris-Bianco, Nicholas, Arash K Ushani, and Ryan M Eustice.
2016. “University of Michigan North Campus long-term vision and
lidar dataset.” IJRR.

Carmona, Juan, Carlos Guindel, Fernando Garcia, and Arturo de la
Escalera. 2021. “eHMI: Review and Guidelines for Deployment on
Autonomous Vehicles.” Sensors 21 (9): 2912.

Casas, Sergio, Cole Gulino, Simon Suo, Katie Luo, Renjie Liao, and
Raquel Urtasun. 2020. “Implicit Latent Variable Model for Scene-
Consistent Motion Forecasting.” In ECCV, 624–41. Springer.

Casas, Sergio, Cole Gulino, Simon Suo, and Raquel Urtasun. 2020.
“The Importance of Prior Knowledge in Precise Multimodal Pre-
diction.” In IROS.

Casas, Sergio, Wenjie Luo, and Raquel Urtasun. 2018. “IntentNet:
Learning to Predict Intention from Raw Sensor Data.” In CoRL,
947–56. PMLR.

Casas, Sergio, Abbas Sadat, and Raquel Urtasun. 2021. “MP3: A
Unified Model to Map, Perceive, Predict and Plan.” In CVPR,
14403–12.

Chai, Yuning, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov.
2020. “MultiPath: Multiple Probabilistic Anchor Trajectory Hy-
potheses for Behavior Prediction.” In CoRL.

Chang, Chia-Ming, Koki Toda, Xinyue Gui, Stela H Seo, and Takeo
Igarashi. 2022. “Can Eyes on a Car Reduce Traffic Accidents?” In
Proceedings of the 14th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications, 349–59.

Chaurasia, Abhishek, and Eugenio Culurciello. 2017. “LinkNet: Ex-
ploiting Encoder Representations for Efficient Semantic Segmenta-
tion.” In 2017 IEEE Visual Communications and Image Processing

learning rich representations for robot state estimation 129

(VCIP), 1–4. IEEE.
Checchin, Paul, Franck Gérossier, Christophe Blanc, Roland Cha-

puis, and Laurent Trassoudaine. 2010. “Radar Scan Matching
SLAM Using the Fourier-Mellin Transform.” In Field and Service
Robotics, 151–61. Springer.

Chen, David M, Georges Baatz, B Girod, R Grzeszczuk, K Koser, SS
Tsai, R Vedantham, et al. 2011. “City-Scale Landmark Identifica-
tion on Mobile Devices.” In CVPR.

Chen, Xiaozhi, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. 2017.
“Multi-View 3D Object Detection Network for Autonomous Driv-
ing.” In CVPR.

Chen, Xieyuanli, Thomas Läbe, Andres Milioto, Timo Röhling, Jens
Behley, and Cyrill Stachniss. 2022. “OverlapNet: A Siamese Net-
work for Computing LiDAR Scan Similarity with Applications to
Loop Closing and Localization.” Autonomous Robots, 1–21.

Chen, Zhao, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabi-
novich. 2018. “GradNorm: Gradient Normalization for Adaptive
Loss Balancing in Deep Multitask Networks.” In ICML.

Chen, Zhuoyuan, Xun Sun, Liang Wang, Yinan Yu, and Chang
Huang. 2015. “A Deep Visual Correspondence Embedding Model
for Stereo Matching Costs.” In ICCV.

Choy, Christopher, Wei Dong, and Vladlen Koltun. 2020. “Deep
Global Registration.” In CVPR.

Cieslewski, Titus, Siddharth Choudhary, and Davide Scaramuzza.
2018. “Data-Efficient Decentralized Visual SLAM.” In ICRA.

Clark, Kevin, Minh-Thang Luong, Urvashi Khandelwal, Christopher
D Manning, and Quoc V Le. 2019. “BAM! Born-Again Multi-Task
Networks for Natural Language Understanding.” In ACL.

Codevilla, Felipe, Antonio M Lopez, Vladlen Koltun, and Alexey
Dosovitskiy. 2018. “On Offline Evaluation of Vision-Based Driving
Models.” In ECCV, 236–51.

Collobert, Ronan, and Jason Weston. 2008. “A Unified Architecture
for Natural Language Processing: Deep Neural Networks with
Multitask Learning.” In ICML.

Crawshaw, Michael. 2020. “Multi-Task Learning with Deep Neural
Networks: A Survey.” arXiv Preprint arXiv:2009.09796.

Cui, Henggang, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han
Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schneider, and Nemanja
Djuric. 2019. “Multimodal Trajectory Predictions for Autonomous
Driving Using Deep Convolutional Networks.” In ICRA.

Cummins, Mark, and Paul Newman. 2008. “FAB-MAP: Probabilistic
Localization and Mapping in the Space of Appearance.” IJRR.

Dai, Jifeng, Kaiming He, and Jian Sun. 2016. “Instance-Aware Seman-
tic Segmentation via Multi-Task Network Cascades.” In CVPR.

learning rich representations for robot state estimation 130

Daimler AG. 2015. “The Mercedes-Benz F 015 Luxury in Motion.”
2015. https://media.mbusa.com/releases/the-mercedes-benz-f-
015-luxury-in-motion.

Dasgupta, B, and BN Chatterji. 1996. “Fourier-Mellin Transform
Based Image Matching Algorithm.” IETE Journal of Research 42
(1): 3–9.

Dauner, Daniel, Marcel Hallgarten, Andreas Geiger, and Kashyap
Chitta. 2023. “Parting with Misconceptions about Learning-Based
Vehicle Motion Planning.” In CoRL, 1268–81. PMLR.

Davison, Andrew J. 2018. “FutureMapping: The Computational
Structure of Spatial AI Systems.” arXiv Preprint arXiv:1803.11288.

Davison, Andrew J, Ian D Reid, Nicholas D Molton, and Olivier
Stasse. 2007. “MonoSLAM: Real-Time Single Camera SLAM.”
TPAMI 29 (6): 1052–67.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. “ImageNet: A Large-Scale Hierarchical Image Database.” In
CVPR, 248–55. IEEE.

Deschênes, Simon-Pierre, Dominic Baril, Vladimı́r Kubelka, Philippe
Giguere, and François Pomerleau. 2021. “Lidar Scan Registration
Robust to Extreme Motions.” In 2021 18th Conference on Robots
and Vision (CRV), 17–24. IEEE.

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. 2018.
“SuperPoint: Self-Supervised Interest Point Detection and Descrip-
tion.” In CVPR Workshops, 224–36.

Dewan, Ayush, Tim Caselitz, and Wolfram Burgard. 2018. “Learning
a Local Feature Descriptor for 3D LiDAR Scans.” In IROS.

Douze, Matthijs, Alexandr Guzhva, Chengqi Deng, Jeff Johnson,
Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lu-
cas Hosseini, and Hervé Jégou. 2024. “The FAISS Library.” https:
//arxiv.org/abs/2401.08281.

Du, Juan, Rui Wang, and Daniel Cremers. 2020. “DH3D: Deep Hier-
archical 3D Descriptors for Robust Large-Scale 6DoF Relocaliza-
tion.” In ECCV.

Dusmanu, Mihai, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef
Sivic, Akihiko Torii, and Torsten Sattler. 2019. “D2-Net: A Train-
able CNN for Joint Detection and Description of Local Features.”
In CVPR.

Ebadi, Kamak, Lukas Bernreiter, Harel Biggie, Gavin Catt, Yun
Chang, Arghya Chatterjee, Christopher E Denniston, et al. 2023.
“Present and Future of SLAM in Extreme Environments: The
DARPA SubT Challenge.” T-RO.

Engel, Jakob, Vladlen Koltun, and Daniel Cremers. 2018. “Direct
Sparse Odometry.” TPAMI. https://cvg.cit.tum.de/_media/
spezial/bib/engel_et_al_pami2018.pdf.

https://media.mbusa.com/releases/the-mercedes-benz-f-015-luxury-in-motion
https://media.mbusa.com/releases/the-mercedes-benz-f-015-luxury-in-motion
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.08281
https://cvg.cit.tum.de/_media/spezial/bib/engel_et_al_pami2018.pdf
https://cvg.cit.tum.de/_media/spezial/bib/engel_et_al_pami2018.pdf

learning rich representations for robot state estimation 131

Engel, Jakob, Thomas Schöps, and Daniel Cremers. 2014. “LSD-
SLAM: Large-Scale Direct Monocular SLAM.” In ECCV.

Fähse, Thomas. 2021. “Making Dashcam Videos GDPR Compliant
Using Machine Learning.” 2021. https://towardsdatascience.com/
making-dashcam-videos-gdpr-compliant-f9832883fe94.

Fan, Lue, Yuxue Yang, Yiming Mao, Feng Wang, Yuntao Chen,
Naiyan Wang, and Zhaoxiang Zhang. 2023. “Once Detected, Never
Lost: Surpassing Human Performance in Offline LiDAR Based 3D
Object Detection.” In ICCV, 19820–29.

Filliat, David. 2007. “A Visual Bag of Words Method for Interactive
Qualitative Localization and Mapping.” In ICRA.

Floros, Georgios, Benito van der Zander, and Bastian Leibe. 2013.
“OpenStreetSLAM: Global Vehicle Localization Using Open-
StreetMaps.” In ICRA.

Frossard, Davi, Simon Suo, Sergio Casas, James Tu, Rui Hu, and
Raquel Urtasun. 2020. “StrObe: Streaming Object Detection from
LiDAR Packets.” In CoRL.

Frossard, Davi, and Raquel Urtasun. 2018. “End-to-End Learning of
Multi-Sensor 3D Tracking by Detection.” In ICRA, 635–42. IEEE.

Gallego, Guillermo, Tobi Delbrück, Garrick Orchard, Chiara Bar-
tolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger, et al. 2020.
“Event-Based Vision: A Survey.” TPAMI 44 (1): 154–80.

Gallier, Jean H, and Jocelyn Quaintance. 2020. Differential Geometry
and Lie Groups: A Computational Perspective. Vol. 12. Springer
Nature.

Gálvez-López, Dorian, and Juan D Tardós. 2012. “Bags of Binary
Words for Fast Place Recognition in Image Sequences.” T-RO.

Gao, Jiyang, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov,
Congcong Li, and Cordelia Schmid. 2020. “VectorNet: Encoding
HD Maps and Agent Dynamics from Vectorized Representation.”
In CVPR.

Gehrig, Daniel, and Davide Scaramuzza. 2024. “Low-Latency Auto-
motive Vision with Event Cameras.” Nature 629 (8014): 1034–40.

Geiger, Andreas, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
2013. “Vision Meets Robotics: The KITTI Dataset.” IJRR 32 (11):
1231–37.

Geiger, Andreas, Julius Ziegler, and Christoph Stiller. 2011. “Stere-
oScan: Dense 3D Reconstruction in Real-Time.” In IV.

Geyer, Jakob, Yohannes Kassahun, Mentar Mahmudi, Xavier Ri-
cou, Rupesh Durgesh, Andrew S Chung, Lorenz Hauswald, et al.
2020. “A2D2: Audi Autonomous Driving Dataset.” arXiv Preprint
arXiv:2004.06320.

Gordo, Albert, Jon Almazán, Jerome Revaud, and Diane Larlus. 2016.
“Deep Image Retrieval: Learning Global Representations for Image

https://towardsdatascience.com/making-dashcam-videos-gdpr-compliant-f9832883fe94
https://towardsdatascience.com/making-dashcam-videos-gdpr-compliant-f9832883fe94

learning rich representations for robot state estimation 132

Search.” In ECCV.
Gulino, Cole, Justin Fu, Wenjie Luo, George Tucker, Eli Bronstein,

Yiren Lu, Jean Harb, et al. 2024. “Waymax: An Accelerated,
Data-Driven Simulator for Large-Scale Autonomous Driving Re-
search.” NeurIPS 36.

Guo, Michelle, Albert Haque, De-An Huang, Serena Yeung, and Li
Fei-Fei. 2018. “Dynamic Task Prioritization for Multitask Learn-
ing.” In ECCV.

Guo, Xiaoxin, Zhiwen Xu, Yinan Lu, and Yunjie Pang. 2005. “An
Application of Fourier-Mellin Transform in Image Registration.” In
The Fifth International Conference on Computer and Information
Technology (CIT’05), 619–23. IEEE.

Han, Wei, Zhengdong Zhang, Benjamin Caine, Brandon Yang, Christoph
Sprunk, Ouais Alsharif, Jiquan Ngiam, Vijay Vasudevan, Jonathon
Shlens, and Zhifeng Chen. 2020. “Streaming Object Detection for
3-D Point Clouds.” In ECCV.

Hartley, Richard, and Andrew Zisserman. 2003. Multiple View Geome-
try in Computer Vision. Cambridge university press.

Hashimoto, Kazuma, Caiming Xiong, Yoshimasa Tsuruoka, and
Richard Socher. 2017. “A Joint Many-Task Model: Growing a
Neural Network for Multiple NLP Tasks.” In EMNLP.

Hausler, Stephen, Sourav Garg, Ming Xu, Michael Milford, and Tobias
Fischer. 2021. “Patch-NetVLAD: Multi-Scale Fusion of Locally-
Global Descriptors for Place Recognition.” In CVPR, 14141–52.

Havlena, Michal, and Konrad Schindler. 2014. “Vocmatch: Efficient
Multiview Correspondence for Structure from Motion.” In ECCV.

Hays, James, and Alexei A. Efros. 2008. “Im2gps: Estimating Geo-
graphic Information from a Single Image.” In CVPR.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017.
“Mask R-CNN.” In ICCV.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
“Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification.” In ICCV.

———. 2016. “Deep Residual Learning for Image Recognition.” In
CVPR, 770–78.

He, Li, Xiaolong Wang, and Hong Zhang. 2016. “M2DP: A novel 3D
point cloud descriptor and its application in loop closure detec-
tion.” In IROS.

Herau, Quentin, Nathan Piasco, Moussab Bennehar, Luis Roldao,
Dzmitry Tsishkou, Cyrille Migniot, Pascal Vasseur, and Cédric
Demonceaux. 2024. “SOAC: Spatio-Temporal Overlap-Aware
Multi-Sensor Calibration Using Neural Radiance Fields.” In CVPR,
15131–40.

Hoffer, Christian. 2017. “Ships Fooled in GPS Spoofing Attack Sug-

learning rich representations for robot state estimation 133

gest Russian Cyberweapon.” 2017. https://www.newscientist.com/
article/2143499-ships-fooled-in-gps-spoofing-attack-suggest-
russian-cyberweapon/.

Hofmann-Wellenhof, Bernhard, Herbert Lichtenegger, and Elmar
Wasle. 2007. GNSS–Global Navigation Satellite Systems: GPS,
GLONASS, Galileo, and More. Springer Science & Business Media.

Hu, Anthony, Zak Murez, Nikhil Mohan, Sofı́a Dudas, Jeffrey Hawke,
Vijay Badrinarayanan, Roberto Cipolla, and Alex Kendall. 2021.
“FIERY: Future Instance Prediction in Bird’s-Eye View from Sur-
round Monocular Cameras.” In ICCV, 15273–82.

Hu, Anthony, Lloyd Russell, Hudson Yeo, Zak Murez, George Fe-
doseev, Alex Kendall, Jamie Shotton, and Gianluca Corrado. 2023.
“GAIA-1: A Generative World Model for Autonomous Driving.”
arXiv Preprint arXiv:2309.17080.

Hu, Yihan, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou
Zhu, Siqi Chai, et al. 2023. “Planning-Oriented Autonomous Driv-
ing.” In CVPR, 17853–62.

Hwangbo, Jemin, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso,
Vassilios Tsounis, Vladlen Koltun, and Marco Hutter. 2019.
“Learning Agile and Dynamic Motor Skills for Legged Robots.”
Science Robotics 4 (26).

Indelman, Vadim, Luca Carlone, and Frank Dellaert. 2015. “Planning
in the Continuous Domain: A Generalized Belief Space Approach
for Autonomous Navigation in Unknown Environments.” IJRR 34
(7): 849–82.

Irschara, Arnold, Christopher Zach, Jan-Michael Frahm, and Horst
Bischof. 2009. “From Structure-from-Motion Point Clouds to Fast
Location Recognition.” In CVPR.

Jaderberg, Max, Karen Simonyan, Andrew Zisserman, et al. 2015.
“Spatial Transformer Networks.” In NIPS.

Jegou, Herve, Matthijs Douze, and Cordelia Schmid. 2010. “Product
Quantization for Nearest Neighbor Search.” TPAMI 33 (1): 117–
28.

Jégou, Hervé, Florent Perronnin, Matthijs Douze, Jorge Sánchez,
Patrick Pérez, and Cordelia Schmid. 2011. “Aggregating Local
Image Descriptors into Compact Codes.” TPAMI 34 (9): 1704–16.

Jocher, Glenn. 2020. YOLOv5 by Ultralytics (version 7.0). https:
//doi.org/10.5281/zenodo.3908559.

Johnson, Jeff, Matthijs Douze, and Hervé Jégou. 2017. “Billion-Scale
Similarity Search with GPUs.” arXiv Preprint arXiv:1702.08734.

Joubert, Niels, Tyler GR Reid, and Fergus Noble. 2020. “Develop-
ments in Modern GNSS and Its Impact on Autonomous Vehicle
Architectures.” In IV.

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael

https://www.newscientist.com/article/2143499-ships-fooled-in-gps-spoofing-attack-suggest-russian-cyberweapon/
https://www.newscientist.com/article/2143499-ships-fooled-in-gps-spoofing-attack-suggest-russian-cyberweapon/
https://www.newscientist.com/article/2143499-ships-fooled-in-gps-spoofing-attack-suggest-russian-cyberweapon/
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559

learning rich representations for robot state estimation 134

Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, et al.
2021. “Highly Accurate Protein Structure Prediction with Al-
phaFold.” Nature 596 (7873): 583–89.

Kaiser, Łukasz, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki
Parmar, Llion Jones, and Jakob Uszkoreit. 2017. “One Model to
Learn Them All.” arXiv Preprint arXiv:1706.05137.

Kanai, Takayuki, Igor Vasiljevic, Vitor Guizilini, Adrien Gaidon,
and Rares Ambrus. 2023. “Robust Self-Supervised Extrinsic Self-
Calibration.” In IROS, 1932–39. IEEE.

Kashani, Alireza G, Michael J Olsen, Christopher E Parrish, and
Nicholas Wilson. 2015. “A Review of LiDAR Radiometric Process-
ing: From Ad Hoc Intensity Correction to Rigorous Radiometric
Calibration.” Sensors 15 (11): 28099–128.

Kendall, Alex, and Roberto Cipolla. 2016. “Modelling Uncertainty in
Deep Learning for Camera Relocalization.” In ICRA.

Kendall, Alex, Yarin Gal, and Roberto Cipolla. 2018. “Multi-Task
Learning Using Uncertainty to Weigh Losses for Scene Geometry
and Semantics.” In CVPR.

Kendall, Alex, Matthew Grimes, and Roberto Cipolla. 2015. “PoseNet:
A Convolutional Network for Real-Time 6-DoF Camera Relocaliza-
tion.” In ICCV.

Kendall, Alex, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele
Reda, John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar
Shah. 2019. “Learning to Drive in a Day.” In ICRA.

Kendall, Alex, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry,
Ryan Kennedy, Abraham Bachrach, and Adam Bry. 2017. “End-
to-End Learning of Geometry and Context for Deep Stereo Regres-
sion.” In ICCV, 66–75.

Kerbl, Bernhard, Georgios Kopanas, Thomas Leimkühler, and George
Drettakis. 2023. “3D Gaussian Splatting for Real-Time Radiance
Field Rendering.” ACM Transactions on Graphics 42 (4): 1–14.

Kettwich, Carmen, Andreas Schrank, and Michael Oehl. 2021. “Tele-
operation of Highly Automated Vehicles in Public Transport:
User-Centered Design of a Human-Machine Interface for Remote-
Operation and Its Expert Usability Evaluation.” Multimodal Tech-
nologies and Interaction 5 (5): 26.

Kingma, Diederik P, and Jimmy Ba. 2015. “Adam: A Method for
Stochastic Optimization.” ICLR.

Klein, Georg, and David Murray. 2007. “Parallel Tracking and Map-
ping for Small AR Workspaces.” In ISMAR, 1–10. http://ieeexplore.ieee.org/
document/4538852/.

Klokov, Roman, and Victor Lempitsky. 2017. “Escape from Cells:
Deep Kd-Networks for the Recognition of 3D Point Cloud Models.”
In ICCV.

http://ieeexplore.ieee.org/document/4538852/
http://ieeexplore.ieee.org/document/4538852/

learning rich representations for robot state estimation 135

Knopp, Jan, Josef Sivic, and Tomas Pajdla. 2010. “Avoiding Confus-
ing Features in Place Recognition.” In ECCV.

Komorowski, Jacek. 2021. “Minkloc3D: Point Cloud Based Large-
Scale Place Recognition.” In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 1790–99.

Kuglin, Charles D. 1975. “The Phase Correlation Image Alignment
Method.” In IEEE Int. Conf. On Cybernetics and Society, 1975,
163–65.

Kümmerle, Rainer, Bastian Steder, Christian Dornhege, Michael
Ruhnke, Giorgio Grisetti, Cyrill Stachniss, and Alexander Kleiner.
2009. “On Measuring the Accuracy of SLAM Algorithms.” Au-
tonomous Robots 27 (4): 387.

Levinson, Jesse, Michael Montemerlo, and Sebastian Thrun. 2007.
“Map-Based Precision Vehicle Localization in Urban Environ-
ments.” RSS. http://www.roboticsproceedings.org/rss03/p16.pdf.

Levinson, Jesse, and Sebastian Thrun. 2010. “Robust Vehicle Lo-
calization in Urban Environments Using Probabilistic Maps.” In
ICRA, 4372–78. IEEE.

Lewis, Patrick, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, et al. 2020.
“Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks.” NeurIPS 33: 9459–74.

Li, Junyi, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Wayne Xin Zhao,
Jian-Yun Nie, and Ji-Rong Wen. 2024. “The Dawn After the Dark:
An Empirical Study on Factuality Hallucination in Large Language
Models.” arXiv Preprint arXiv:2401.03205.

Li, Mengtian, Yu-Xiong Wang, and Deva Ramanan. 2020. “Towards
Streaming Perception.” In ECCV.

Li, Run. 2023. “Complete PPK Workflow for DJI Enterprise Drones.”
2023. https://web.archive.org/web/20240619231528/https://
enterprise-insights.dji.com/blog/ppk-post-processed-kinematics-
workflow.

Li, Yunpeng, Noah Snavely, Dan Huttenlocher, and Pascal Fua. 2012.
“Worldwide Pose Estimation Using 3d Point Clouds.” In ECCV.

Li, Zhiqi, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima,
Tong Lu, Yu Qiao, and Jifeng Dai. 2022. “BEVFormer: Learning
Bird’s-Eye-View Representation from Multi-Camera Images via
Spatiotemporal Transformers.” In ECCV, 1–18. Springer.

Liang, Ming, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun.
2019. “Multi-Task Multi-Sensor Fusion for 3D Object Detection.”
In CVPR.

Liang, Ming, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu, Sergio
Casas, and Raquel Urtasun. 2020. “PnPNet: End-to-End Percep-
tion and Prediction with Tracking in the Loop.” In CVPR.

http://www.roboticsproceedings.org/rss03/p16.pdf
https://web.archive.org/web/20240619231528/https://enterprise-insights.dji.com/blog/ppk-post-processed-kinematics-workflow
https://web.archive.org/web/20240619231528/https://enterprise-insights.dji.com/blog/ppk-post-processed-kinematics-workflow
https://web.archive.org/web/20240619231528/https://enterprise-insights.dji.com/blog/ppk-post-processed-kinematics-workflow

learning rich representations for robot state estimation 136

Lin, Chen-Hsuan, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey.
2021. “BARF: Bundle-Adjusting Neural Radiance Fields.” In Pro-
ceedings of the IEEE/CVF International Conference on Computer
Vision, 5741–51.

Lindenberger, Philipp, Paul-Edouard Sarlin, and Marc Pollefeys. 2023.
“LightGlue: Local Feature Matching at Light Speed.” In ICCV.

Linegar, Chris, Winston Churchill, and Paul Newman. 2015. “Work
Smart, Not Hard: Recalling Relevant Experiences for Vast-Scale
but Time-Constrained Localisation.” In ICRA.

Lipson, Lahav, Zachary Teed, and Jia Deng. 2021. “RAFT-Stereo:
Multilevel Recurrent Field Transforms for Stereo Matching.” In
2021 International Conference on 3D Vision (3DV), 218–27. IEEE.

Liu, Liu, Hongdong Li, and Yuchao Dai. 2017. “Efficient Global 2d-3d
Matching for Camera Localization in a Large-Scale 3d Map.” In
ICCV.

Liu, Zhe, Shunbo Zhou, Chuanzhe Suo, Peng Yin, Wen Chen, Hesheng
Wang, Haoang Li, and Yun-Hui Liu. 2019. “LPD-Net: 3D Point
Cloud Learning for Large-Scale Place Recognition and Environ-
ment Analysis.” In CVPR.

Long, Jonathan L, Ning Zhang, and Trevor Darrell. 2014. “Do Con-
vnets Learn Correspondence?” In NIPS.

Low, Weng Fei, and Gim Hee Lee. 2023. “Robust e-NeRF: NeRF from
Sparse & Noisy Events Under Non-Uniform Motion.” In ICCV,
18335–46.

Lowe, David G. 2004. “Distinctive Image Features from Scale-Invariant
Keypoints.” IJCV 60 (2): 91–110. https://doi.org/10.1023/B:
VISI.0000029664.99615.94.

Luiten, Jonathon, Aljosa Osep, Patrick Dendorfer, Philip Torr, An-
dreas Geiger, Laura Leal-Taixé, and Bastian Leibe. 2021. “HOTA:
A Higher Order Metric for Evaluating Multi-Object Tracking.”
IJCV 129: 548–78.

Luminar Technologies. 2024. “A Platform for Safety and Auton-
omy. Built from the Chip-Level up. (Luminar Iris and Sentinel).”
2024. https://web.archive.org/web/20240000000000*/https:
//www.luminartech.com/technology#iris.

Luo, Katie, Zhenzhen Liu, Xiangyu Chen, Yurong You, Sagie Benaim,
Cheng Perng Phoo, Mark Campbell, Wen Sun, Bharath Hariharan,
and Kilian Q Weinberger. 2024. “Reward Finetuning for Faster
and More Accurate Unsupervised Object Discovery.” NIPS 36.

Luo, Wenjie, Alexander G Schwing, and Raquel Urtasun. 2016. “Effi-
cient Deep Learning for Stereo Matching.” In CVPR.

Luo, Wenjie, Bin Yang, and Raquel Urtasun. 2018. “Fast and Furi-
ous: Real Time End-to-End 3D Detection, Tracking and Motion
Forecasting with a Single Convolutional Net.” In CVPR, 3569–77.

https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://web.archive.org/web/20240000000000*/https://www.luminartech.com/technology#iris
https://web.archive.org/web/20240000000000*/https://www.luminartech.com/technology#iris

learning rich representations for robot state estimation 137

Lynen, Simon, Bernhard Zeisl, Dror Aiger, Michael Bosse, Joel Hesch,
Marc Pollefeys, Roland Siegwart, and Torsten Sattler. 2020.
“Large-Scale, Real-Time Visual–Inertial Localization Revisited.”
IJRR 39 (9): 1061–84.

Ma, Junyi, Jun Zhang, Jintao Xu, Rui Ai, Weihao Gu, and Xieyuanli
Chen. 2022. “OverlapTransformer: An Efficient and Yaw-Angle-
Invariant Transformer Network for LiDAR-Based Place Recogni-
tion.” RA-L 7 (3): 6958–65.

Ma, Wei-Chiu, Shenlong Wang, Marcus A Brubaker, Sanja Fidler, and
Raquel Urtasun. 2017. “Find Your Way by Observing the Sun and
Other Semantic Cues.” In ICRA, 6292–99.

Maddern, Will, Geoffrey Pascoe, Matthew Gadd, Dan Barnes, Brian
Yeomans, and Paul Newman. 2020. “Real-Time Kinematic Ground
Truth for the Oxford Robotcar Dataset.” arXiv Preprint arXiv:2002.10152.

Maddern, Will, Geoffrey Pascoe, Chris Linegar, and Paul Newman.
2017. “1 Year, 1000 Km: The Oxford RobotCar Dataset.” IJRR
36.

Manivasagam, Siva, Ioan Andrei Bârsan, Jingkang Wang, Ze Yang,
and Raquel Urtasun. 2023. “Towards Zero Domain Gap: A Com-
prehensive Study of Realistic LiDAR Simulation for Autonomy
Testing.” In ICCV.

Mao, Jiageng, Minzhe Niu, Chenhan Jiang, Hanxue Liang, Jingheng
Chen, Xiaodan Liang, Yamin Li, et al. 2021. “One Million Scenes
for Autonomous Driving: ONCE Dataset.”

Mao, Jiageng, Junjie Ye, Yuxi Qian, Marco Pavone, and Yue Wang.
2023. “A Language Agent for Autonomous Driving.”

Marcu, Ana-Maria, Long Chen, Jan Hünermann, Alice Karnsund,
Benoit Hanotte, Prajwal Chidananda, Saurabh Nair, et al. 2023.
“LingoQA: Video Question Answering for Autonomous Driving.”
arXiv Preprint arXiv:2312.14115.

Martinez-Covarrubias, Julieta. 2018. “Algorithms for Large-Scale
Multi-Codebook Quantization.” PhD thesis, University of British
Columbia.

Mentzer, Fabian, Eirikur Agustsson, Michael Tschannen, Radu Timo-
fte, and Luc Van Gool. 2018. “Conditional Probability Models for
Deep Image Compression.” In CVPR.

Meyer, Gregory P, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez,
and Carl K Wellington. 2019. “LaserNet: An Efficient Probabilistic
3D Object Detector for Autonomous Driving.” In CVPR, 12677–
86.

Mikolajczyk, Krystian, Tinne Tuytelaars, Cordelia Schmid, Andrew
Zisserman, Jiri Matas, Frederik Schaffalitzky, Timor Kadir, and
Luc Van Gool. 2005. “A Comparison of Affine Region Detectors.”
IJCV.

learning rich representations for robot state estimation 138

Mildenhall, Ben, Pratul P Srinivasan, Matthew Tancik, Jonathan
T Barron, Ravi Ramamoorthi, and Ren Ng. 2021. “NeRF: Rep-
resenting Scenes as Neural Radiance Fields for View Synthesis.”
Communications of the ACM 65 (1): 99–106.

Miles, Alistair, John Kirkham, Martin Durant, James Bourbeau, Tarik
Onalan, Joe Hamman, Zain Patel, et al. 2020. Zarr-Developers/Zarr-
Python: V2.4.0 (version v2.4.0). Zenodo. https://doi.org/10.5281/
zenodo.3773450.

Misra, Ishan, Abhinav Shrivastava, Abhinav Gupta, and Martial
Hebert. 2016. “Cross-Stitch Networks for Multi-Task Learning.”
In CVPR.

Misra, Pratap, and Per Enge. 2011. Global Positioning System: Sig-
nals, Measurements, and Performance Revised Second Edition.
Ganga-Jamuna Press.

Moosmann, Frank, and Christoph Stiller. 2013. “Joint Self-Localization
and Tracking of Generic Objects in 3D Range Data.” In ICRA.

Moravec, Hans. 1988. Mind Children: The Future of Robot and Hu-
man Intelligence. Harvard University Press.

Mourikis, Anastasios I, and Stergios I Roumeliotis. 2007. “A Multi-
State Constraint Kalman Filter for Vision-Aided Inertial Naviga-
tion.” In ICRA, 3565–72. IEEE.

Mu, Jesse, Xiang Li, and Noah Goodman. 2024. “Learning to Com-
press Prompts with Gist Tokens.” NeurIPS 36.

Mu, Norman, Jingwei Ji, Zhenpei Yang, Nate Harada, Haotian Tang,
Kan Chen, Charles R Qi, et al. 2024. “MoST: Multi-Modality
Scene Tokenization for Motion Prediction.” In CVPR, 14988–99.

Müller, Thomas, Alex Evans, Christoph Schied, and Alexander Keller.
2022. “Instant Neural Graphics Primitives with a Multiresolution
Hash Encoding.” ACM Transactions on Graphics (TOG) 41 (4):
1–15.

Mur-Artal, Raúl, Jose Maria Martínez Montiel, and Juan D Tardós.
2015. “ORB-SLAM: A Versatile and Accurate Monocular SLAM
System.” IEEE Transactions on Robotics.

Mur-Artal, Raúl, and Juan D. Tardós. 2017. “ORB-SLAM2: An
Open-Source SLAM System for Monocular, Stereo, and RGB-D
Cameras.” T-RO. https://arxiv.org/abs/1610.06475.

Murthy, J Krishna, Miles Macklin, Florian Golemo, Vikram Voleti,
Linda Petrini, Martin Weiss, Breandan Considine, et al. 2020.
“gradSim: Differentiable Simulation for System Identification and
Visuomotor Control.” In ICLR.

Nardi, Luigi, Bruno Bodin, M Zeeshan Zia, John Mawer, Andy Nis-
bet, Paul HJ Kelly, Andrew J Davison, et al. 2015. “Introducing
SLAMBench, a Performance and Accuracy Benchmarking Method-
ology for SLAM.” In ICRA.

https://doi.org/10.5281/zenodo.3773450
https://doi.org/10.5281/zenodo.3773450
https://arxiv.org/abs/1610.06475

learning rich representations for robot state estimation 139

Nelson, Peter, Winston Churchill, Ingmar Posner, and Paul Newman.
2015. “From Dusk till Dawn: Localisation at Night Using Artificial
Light Sources.” In ICRA.

Novatel Inc. 2015. An Introduction to GNSS (Second Edition).
Oquab, Maxime, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc

Szafraniec, Vasil Khalidov, Pierre Fernandez, et al. 2023. “DI-
NOv2: Learning Robust Visual Features Without Supervision.”
arXiv Preprint arXiv:2304.07193.

Ort, Teddy, Krishna Murthy, Rohan Banerjee, Sai Krishna Gottipati,
Dhaivat Bhatt, Igor Gilitschenski, Liam Paull, and Daniela Rus.
2019. “MapLite: Autonomous Intersection Navigation Without a
Detailed Prior Map.” IEEE Robotics and Automation Letters 5 (2):
556–63.

Pais, G Dias, Srikumar Ramalingam, Venu Madhav Govindu, Jac-
into C Nascimento, Rama Chellappa, and Pedro Miraldo. 2020.
“3DRegNet: A Deep Neural Network for 3D Point Registration.”
In CVPR, 7193–203.

Panek, Vojtech, Zuzana Kukelova, and Torsten Sattler. 2023. “Visual
Localization Using Imperfect 3D Models from the Internet.” In
CVPR, 13175–86.

Parkinson, Bradford W, Per Enge, Penina Axelrad, and James J
Spilker Jr. 1996. Global Positioning System: Theory and Applica-
tions, Volume II. American Institute of Aeronautics; Astronautics.

Petrenko, Aleksei, Erik Wijmans, Brennan Shacklett, and Vladlen
Koltun. 2021. “Megaverse: Simulating Embodied Agents at One
Million Experiences Per Second.” In ICML, 8556–66. PMLR.

Phan-Minh, Tung, Elena Corina Grigore, Freddy A Boulton, Oscar
Beijbom, and Eric M Wolff. 2020. “CoverNet: Multimodal Behav-
ior Prediction Using Trajectory Sets.” In CVPR.

Philion, Jonah, and Sanja Fidler. 2020. “Lift, Splat, Shoot: Encoding
Images from Arbitrary Camera Rigs by Implicitly Unprojecting to
3D.” In ECCV.

Philion, Jonah, Amlan Kar, and Sanja Fidler. 2020. “Learning to
Evaluate Perception Models Using Planner-Centric Metrics.” In
CVPR.

Pitropov, Matthew, Danson Evan Garcia, Jason Rebello, Michael
Smart, Carlos Wang, Krzysztof Czarnecki, and Steven Waslander.
2021. “Canadian Adverse Driving Conditions Dataset.” IJRR 40
(4-5): 681–90.

Qi, Charles R, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017.
“PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation.”

Qi, Charles R, Li Yi, Hao Su, and Leonidas J Guibas. 2017. “Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in a

learning rich representations for robot state estimation 140

Metric Space.” In NeurIPS.
Qu, Xiaozhi, Bahman Soheilian, and Nicolas Paparoditis. 2015. “Ve-

hicle Localization Using Mono-Camera and Geo-Referenced Traffic
Signs.” In IVS. IEEE.

Radenović, Filip, Giorgos Tolias, and Ondřej Chum. 2016. “CNN
Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with
Hard Examples.” In ECCV.

Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, et al. 2021. “Learn-
ing Transferable Visual Models from Natural Language Supervi-
sion.” In ICML, 8748–63. PMLR.

Radford, Alec, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. 2023. “Robust Speech Recognition
via Large-Scale Weak Supervision.” In ICML, 28492–518. PMLR.

Radwan, Noha, Abhinav Valada, and Wolfram Burgard. 2018. “VLoc-
Net++: Deep Multitask Learning for Semantic Visual Localization
and Odometry.” RA-L 3 (4): 4407–14.

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi.
2016. “You Only Look Once: Unified, Real-Time Object Detec-
tion.” In CVPR, 779–88.

Reid, Tyler GR, Bryan Chan, Ashish Goel, Kazuma Gunning, Brian
Manning, Jerami Martin, Andrew Neish, Adrien Perkins, and
Paul Tarantino. 2020. “Satellite Navigation for the Age of Auton-
omy.” In IEEE/ION Position, Location and Navigation Symposium
(PLANS), 342–52.

Reinke, Andrzej, Matteo Palieri, Benjamin Morrell, Yun Chang, Ka-
mak Ebadi, Luca Carlone, and Ali-Akbar Agha-Mohammadi. 2022.
“LOCUS 2.0: Robust and Computationally Efficient Lidar Odome-
try for Real-Time 3D Mapping.” RA-L 7 (4): 9043–50.

Rematas, Konstantinos, Andrew Liu, Pratul P Srinivasan, Jonathan
T Barron, Andrea Tagliasacchi, Thomas Funkhouser, and Vittorio
Ferrari. 2022. “Urban Radiance Fields.” In CVPR, 12932–42.

Revaud, Jerome, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia
Schmid. 2015. “Epicflow: Edge-Preserving Interpolation of Corre-
spondences for Optical Flow.” In CVPR, 1164–72.

Rhinehart, Nicholas, Jeff He, Charles Packer, Matthew A Wright,
Rowan McAllister, Joseph E Gonzalez, and Sergey Levine. 2021.
“Contingencies from Observations: Tractable Contingency Plan-
ning with Learned Behavior Models.” In ICRA.

Rippel, Oren, and Lubomir Bourdev. 2017. “Real-Time Adaptive
Image Compression.” ICML.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net:
Convolutional Networks for Biomedical Image Segmentation.” In
Medical Image Computing and Computer-Assisted Intervention–

learning rich representations for robot state estimation 141

MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18, 234–41. Springer.

Rosinol, Antoni, Marcus Abate, Yun Chang, and Luca Carlone. 2020.
“Kimera: An Open-Source Library for Real-Time Metric-Semantic
Localization and Mapping.” In ICRA, 1689–96. IEEE.

Rosique, Francisca, Pedro J Navarro, Carlos Fernández, and Antonio
Padilla. 2019. “A Systematic Review of Perception System and
Simulators for Autonomous Vehicles Research.” Sensors 19 (3):
648.

Rusu, Radu Bogdan, Nico Blodow, and Michael Beetz. 2009. “Fast
Point Feature Histograms (FPFH) for 3D Registration.” In ICRA.

Sadat, Abbas, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan,
and Raquel Urtasun. 2020. “Perceive, Predict, and Plan: Safe Mo-
tion Planning Through Interpretable Semantic Representations.”
In ECCV.

Sadat, Abbas, Mengye Ren, Andrei Pokrovsky, Yen-Chen Lin, Ersin
Yumer, and Raquel Urtasun. 2019. “Jointly Learnable Behavior
and Trajectory Planning for Self-Driving Vehicles.” In IROS, 3949–
56. IEEE.

Sarlin, Paul-Edouard, Cesar Cadena, Roland Siegwart, and Marcin
Dymczyk. 2019. “From Coarse to Fine: Robust Hierarchical Local-
ization at Large Scale.” In CVPR, 12716–25.

Sarlin, Paul-Edouard, Daniel DeTone, Tomasz Malisiewicz, and An-
drew Rabinovich. 2020. “SuperGlue: Learning Feature Matching
with Graph Neural Networks.” In CVPR, 4938–47.

Sattler, Torsten, Michal Havlena, Filip Radenovic, Konrad Schindler,
and Marc Pollefeys. 2015. “Hyperpoints and Fine Vocabularies for
Large-Scale Location Recognition.” In ICCV.

Sattler, Torsten, Bastian Leibe, and Leif Kobbelt. 2011. “Fast Image-
Based Localization Using Direct 2d-to-3d Matching.” In ICCV.

Sattler, Torsten, Will Maddern, Carl Toft, Akihiko Torii, Lars Ham-
marstrand, Erik Stenborg, Daniel Safari, et al. 2018. “Benchmark-
ing 6DOF Outdoor Visual Localization in Changing Conditions.”
In CVPR, 8601–10.

Sattler, Torsten, Akihiko Torii, Josef Sivic, Marc Pollefeys, Hajime
Taira, Masatoshi Okutomi, and Tomas Pajdla. 2017. “Are Large-
Scale 3D Models Really Necessary for Accurate Visual Localiza-
tion?” In CVPR.

Sattler, Torsten, Tobias Weyand, Bastian Leibe, and Leif Kobbelt.
2012. “Image Retrieval for Image-Based Localization Revisited.” In
BMVC.

Sattler, Torsten, Qunjie Zhou, Marc Pollefeys, and Laura Leal-Taixe.
2019. “Understanding the Limitations of CNN-Based Absolute
Camera Pose Regression.” In CVPR.

learning rich representations for robot state estimation 142

Schonberger, Johannes L, and Jan-Michael Frahm. 2016. “Structure-
from-Motion Revisited.” In CVPR, 4104–13.

Schönberger, Johannes L, Marc Pollefeys, Andreas Geiger, and Torsten
Sattler. 2018. “Semantic Visual Localization.” JPRS.

Schreiber, Markus, Carsten Knöppel, and Uwe Franke. 2013. “Lane-
Loc: Lane Marking Based Localization Using Highly Accurate
Maps.” In IV.

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen
Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, et al.
2020. “Mastering Atari, Go, Chess and Shogi by Planning with
a Learned Model.” Nature 588 (7839): 604–9.

Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. 2015. “Hidden Technical
Debt in Machine Learning Systems.” NIPS 28.

Sener, Ozan, and Vladlen Koltun. 2018. “Multi-Task Learning as
Multi-Objective Optimization.” In NIPS.

Shacklett, Brennan, Luc Guy Rosenzweig, Zhiqiang Xie, Bidipta
Sarkar, Andrew Szot, Erik Wijmans, Vladlen Koltun, Dhruv Batra,
and Kayvon Fatahalian. 2023. “An Extensible, Data-Oriented Ar-
chitecture for High-Performance, Many-World Simulation.” ACM
Transactions on Graphics (TOG) 42 (4): 1–13.

Shan, Tixiao, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti,
and Daniela Rus. 2020. “LIO-SAM: Tightly-Coupled LiDAR In-
ertial Odometry via Smoothing and Mapping.” In IROS, 5135–42.
IEEE.

Shannon, Claude E. 1948. “A Mathematical Theory of Communica-
tion.” The Bell System Technical Journal 27 (3): 379–423.

Shen, Yuan, Bhargav Chandaka, Zhi-hao Lin, Albert Zhai, Hang Cui,
David Forsyth, and Shenlong Wang. 2024. “Sim-on-Wheels: Physi-
cal World in the Loop Simulation for Self-Driving.” ICRA.

Shi, Shaoshuai, Xiaogang Wang, and Hongsheng Li. 2019. “PointR-
CNN: 3D Object Proposal Generation and Detection from Point
Cloud.” In CVPR.

Shotton, Jamie, Ben Glocker, Christopher Zach, Shahram Izadi, An-
tonio Criminisi, and Andrew Fitzgibbon. 2013. “Scene Coordinate
Regression Forests for Camera Relocalization in RGB-D Images.”
In CVPR.

Siegwart, Roland, Illah Reza Nourbakhsh, and Davide Scaramuzza.
2011. Introduction to Autonomous Mobile Robots. MIT press.

Sucar, Edgar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. 2021.
“iMap: Implicit Mapping and Positioning in Real-Time.” In ICCV,
6229–38.

Sun, Pei, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard,

learning rich representations for robot state estimation 143

Vijaysai Patnaik, Paul Tsui, James Guo, et al. 2020. “Scalability
in Perception for Autonomous Driving: Waymo Open Dataset.” In
CVPR, 2446–54.

Tancik, Matthew, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben
Mildenhall, Pratul P Srinivasan, Jonathan T Barron, and Henrik
Kretzschmar. 2022. “Block-NeRF: Scalable Large Scene Neural
View Synthesis.” In CVPR, 8248–58.

Teed, Zachary, and Jia Deng. 2020. “RAFT: Recurrent All-Pairs Field
Transforms for Optical Flow.” In ECCV, 402–19. Springer.

———. 2021a. “DROID-SLAM: Deep Visual Slam for Monocular,
Stereo, and RGB-D Cameras.” NeurIPS 34: 16558–69.

———. 2021b. “RAFT-3D: Scene Flow Using Rigid-Motion Embed-
dings.” In CVPR, 8375–84.

Teichmann, Marvin, Michael Weber, Marius Zoellner, Roberto Cipolla,
and Raquel Urtasun. 2018. “MultiNet: Real-Time Joint Semantic
Reasoning for Autonomous Driving.” In IV.

Thrun, Sebastian. 2007. “Simultaneous Localization and Mapping.”
In Robotics and Cognitive Approaches to Spatial Mapping, 13–41.
Springer.

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. 2005. Probabilis-
tic Robotics (Intelligent Robotics and Autonomous Agents). The
MIT Press.

Thrun, Sebastian, and Michael Montemerlo. 2006. “The Graph SLAM
Algorithm with Applications to Large-Scale Mapping of Urban
Structures.” IJRR.

Toderici, George, Sean M O’Malley, Sung Jin Hwang, Damien Vincent,
David Minnen, Shumeet Baluja, Michele Covell, and Rahul Suk-
thankar. 2016. “Variable Rate Image Compression with Recurrent
Neural Networks.” In ICLR.

Toderici, George, Damien Vincent, Nick Johnston, Sung Jin Hwang,
David Minnen, Joel Shor, and Michele Covell. 2017. “Full Reso-
lution Image Compression with Recurrent Neural Networks.” In
CVPR, 5435–43.

Tolias, Giorgos, Ronan Sicre, and Hervé Jégou. 2016. “Particular
Object Retrieval with Integral Max-Pooling of CNN Activations.”
In ICLR.

Tombari, Federico, Samuele Salti, and Luigi Di Stefano. 2010. “Unique
Signatures of Histograms for Local Surface Description.” In ECCV.

Tonderski, Adam, Carl Lindström, Georg Hess, William Ljungbergh,
Lennart Svensson, and Christoffer Petersson. 2024. “NeuRAD:
Neural Rendering for Autonomous Driving.”

Torii, Akihiko, Relja Arandjelovic, Josef Sivic, Masatoshi Okutomi,
and Tomas Pajdla. 2015. “24/7 Place Recognition by View Synthe-
sis.” In CVPR, 1808–17.

learning rich representations for robot state estimation 144

Torii, Akihiko, Josef Sivic, Masatoshi Okutomi, and Tomas Pajdla.
2015. “Visual Place Recognition with Repetitive Structures.”
TPAMI, 1–14.

Tran, Richard, Janice Lan, Muhammed Shuaibi, Brandon M Wood,
Siddharth Goyal, Abhishek Das, Javier Heras-Domingo, et al.
2023. “The Open Catalyst 2022 (OC22) Dataset and Challenges
for Oxide Electrocatalysts.” ACS Catalysis 13 (5): 3066–84.

Triggs, Bill, Philip F McLauchlan, Richard I Hartley, and Andrew W
Fitzgibbon. 1999. “Bundle Adjustment—A Modern Synthesis.” In
International Workshop on Vision Algorithms.

Tufte, Edward R. 2001. The Visual Display of Quantitative Infor-
mation. Second Edition. Cheshire, Connecticut: Graphics Press.
https://www.edwardtufte.com/tufte/books_vdqi.

Turki, Haithem, Jason Y Zhang, Francesco Ferroni, and Deva Ra-
manan. 2023. “SUDS: Scalable Urban Dynamic Scenes.” In CVPR,
12375–85.

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky. 2017. “Im-
proved Texture Networks: Maximizing Quality and Diversity in
Feed-Forward Stylization and Texture Synthesis.” In CVPR, 6924–
32.

Uy, Mikaela Angelina, and Gim Hee Lee. 2018. “PointNetVLAD:
Deep Point Cloud Based Retrieval for Large-Scale Place Recogni-
tion.” In CVPR.

Valada, Abhinav, Noha Radwan, and Wolfram Burgard. 2018. “Deep
Auxiliary Learning for Visual Localization and Odometry.”

van den Berg, Jur, Sachin Patil, and Ron Alterovitz. 2012. “Motion
Planning Under Uncertainty Using Iterative Local Optimization in
Belief Space.” IJRR 31 (11): 1263–78.

Velodyne Lidar, Inc. 2021. “Velodyne Lidar Announces Next-Generation
Velabit™ Sensor, Media Reports.” 2021. https://velodynelidar.com/
media-coverage/next-generation-velabit/.

Verghese, Simon. 2019. “Bringing 3D Perimeter Lidar to Partners.”
2019. https://waymo.com/blog/2019/03/bringing-3d-perimeter-
lidar-to-partners/.

Wan, Guowei, Xiaolong Yang, Renlan Cai, Hao Li, Yao Zhou, Hao
Wang, and Shiyu Song. 2018. “Robust and Precise Vehicle Local-
ization Based on Multi-Sensor Fusion in Diverse City Scenes.” In
ICRA.

Wang, Haiping, Yuan Liu, Zhen Dong, and Wenping Wang. 2022.
“You Only Hypothesize Once: Point Cloud Registration with
Rotation-Equivariant Descriptors.” In Proceedings of the 30th ACM
International Conference on Multimedia, 1630–41.

Wang, Jingkang, Siva Manivasagam, Yun Chen, Ze Yang, Ioan Andrei
Bârsan, Anqi Joyce Yang, Wei-chiu Ma, and Raquel Urtasun. 2022.

https://www.edwardtufte.com/tufte/books_vdqi
https://velodynelidar.com/media-coverage/next-generation-velabit/
https://velodynelidar.com/media-coverage/next-generation-velabit/
https://waymo.com/blog/2019/03/bringing-3d-perimeter-lidar-to-partners/
https://waymo.com/blog/2019/03/bringing-3d-perimeter-lidar-to-partners/

learning rich representations for robot state estimation 145

“CADsim: Robust and Scalable in-the-Wild 3D Reconstruction for
Realistic and Controllable Sensor Simulation.” In CoRL.

Wang, Peng, Ruigang Yang, Binbin Cao, Wei Xu, and Yuanqing Lin.
2018. “DeLS-3D: Deep Localization and Segmentation with a 3D
Semantic Map.” In CVPR.

Wang, Sen, Ronald Clark, Hongkai Wen, and Niki Trigoni. 2017.
“DeepVO: Towards End-to-End Visual Odometry with Deep Re-
current Convolutional Neural Networks.” In ICRA, 2043–50. IEEE.

Wang, Shenlong. 2021. “Deep Structured Models for Spatial Intelli-
gence.” PhD thesis, University of Toronto (Canada).

Wang, Tsun-Hsuan, Sivabalan Manivasagam, Ming Liang, Bin Yang,
Wenyuan Zeng, James Tu, and Raquel Urtasun. 2020. “V2VNet:
Vehicle-to-Vehicle Communication for Joint Perception and Predic-
tion.”

Wang, Yue, and Justin M Solomon. 2019. “Deep Closest Point: Learn-
ing Representations for Point Cloud Registration.” In ICCV, 3523–
32.

Wang, Zirui, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian
Prisacariu. 2021. “NeRF−−: Neural Radiance Fields Without
Known Camera Parameters.” arXiv Preprint arXiv:2102.07064.

Warburg, Frederik, Soren Hauberg, Manuel Lopez-Antequera, Pau
Gargallo, Yubin Kuang, and Javier Civera. 2020. “Mapillary
Street-Level Sequences: A Dataset for Lifelong Place Recognition.”
In CVPR, 2626–35.

Waymo LLC. 2024. “Advice Letter 0002 (Tier 2) to the Public Util-
ities Commission of the State of California,” 2024. https://
web.archive.org/web/20240703035846/https://www.cpuc.ca.gov/
-/media/cpuc-website/divisions/consumer-protection-and-
enforcement-division/documents/tlab/av-programs/waymo-llc-
cpuc-advice-letter-0002-tier-2--january-2024-passenger-
safety-plan-update-january-192024.pdf.

Welzel, Andre, Pierre Reisdorf, and Gerd Wanielik. 2015. “Improving
Urban Vehicle Localization with Traffic Sign Recognition.” In
ICITS. IEEE.

Weston, Rob, Matthew Gadd, Daniele De Martini, Paul Newman,
and Ingmar Posner. 2022. “Fast-MbyM: Leveraging Translational
Invariance of the Fourier Transform for Efficient and Accurate
Radar Odometry.” In ICRA, 2186–92. IEEE.

Wiesmann, Louis, Tiziano Guadagnino, Ignacio Vizzo, Giorgio Grisetti,
Jens Behley, and Cyrill Stachniss. 2022. “DCPCR: Deep Com-
pressed Point Cloud Registration in Large-Scale Outdoor Environ-
ments.” IEEE Robotics and Automation Letters 7 (3): 6327–34.

Wikipedia Contributors. 2019. “JPEG - Wikipedia.” https://en.wikipedia.org/
wiki/JPEG.

https://web.archive.org/web/20240703035846/https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/consumer-protection-and-enforcement-division/documents/tlab/av-programs/waymo-llc-cpuc-advice-letter-0002-tier-2--january-2024-passenger-safety-plan-update-january-192024.pdf
https://web.archive.org/web/20240703035846/https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/consumer-protection-and-enforcement-division/documents/tlab/av-programs/waymo-llc-cpuc-advice-letter-0002-tier-2--january-2024-passenger-safety-plan-update-january-192024.pdf
https://web.archive.org/web/20240703035846/https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/consumer-protection-and-enforcement-division/documents/tlab/av-programs/waymo-llc-cpuc-advice-letter-0002-tier-2--january-2024-passenger-safety-plan-update-january-192024.pdf
https://web.archive.org/web/20240703035846/https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/consumer-protection-and-enforcement-division/documents/tlab/av-programs/waymo-llc-cpuc-advice-letter-0002-tier-2--january-2024-passenger-safety-plan-update-january-192024.pdf
https://web.archive.org/web/20240703035846/https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/consumer-protection-and-enforcement-division/documents/tlab/av-programs/waymo-llc-cpuc-advice-letter-0002-tier-2--january-2024-passenger-safety-plan-update-january-192024.pdf
https://web.archive.org/web/20240703035846/https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/consumer-protection-and-enforcement-division/documents/tlab/av-programs/waymo-llc-cpuc-advice-letter-0002-tier-2--january-2024-passenger-safety-plan-update-january-192024.pdf
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/JPEG

learning rich representations for robot state estimation 146

———. 2023. “Radio Navigation — Wikipedia, the Free Encyclope-
dia.” 2023. https://en.wikipedia.org/wiki/Radio_navigation.

———. 2024a. “Deflate — Wikipedia, the Free Encyclopedia.” 2024.
https://en.wikipedia.org/wiki/Deflate.

———. 2024b. “Snappy (Compression) — Wikipedia, the Free Ency-
clopedia.” 2024. https://en.wikipedia.org/wiki/Snappy_(compression).

Wilson, Benjamin, William Qi, Tanmay Agarwal, John Lambert,
Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, et al. 2023. “Ar-
goverse 2: Next Generation Datasets for Self-Driving Perception
and Forecasting.” arXiv Preprint arXiv:2301.00493.

Wolcott, Ryan W, and Ryan M Eustice. 2014. “Visual Localization
Within LIDAR Maps for Automated Urban Driving.” In IROS.

———. 2015. “Fast LIDAR Localization Using Multiresolution Gaus-
sian Mixture Maps.” In ICRA, 2814–21. IEEE.

Xu, Wei, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. 2022.
“Fast-LIO2: Fast Direct LiDAR-Inertial Odometry.” IEEE Trans-
actions on Robotics 38 (4): 2053–73.

Yan, Yunzhi, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun,
Kun Zhan, Xianpeng Lang, Xiaowei Zhou, and Sida Peng. 2024.
“Street Gaussians for Modeling Dynamic Urban Scenes.” In ECCV.

Yang, Anqi Joyce, Sergio Casas, Nikita Dvornik, Sean Segal, Yuwen
Xiong, Jordan Sir Kwang Hu, Carter Fang, and Raquel Urtasun.
2023. “LabelFormer: Object Trajectory Refinement for Offboard
Perception from LiDAR Point Clouds.” In CoRL, 3364–83. PMLR.

Yang, Anqi Joyce, Can Cui, Ioan Andrei Bârsan, Raquel Urtasun,
and Shenlong Wang. 2021. “Asynchronous Multi-View SLAM.” In
ICRA.

Yang, Bin, Runsheng Guo, Ming Liang, Sergio Casas, and Raquel Ur-
tasun. 2020. “RadarNet: Exploiting Radar for Robust Perception
of Dynamic Objects.” In ECCV, 496–512. Springer.

Yang, Bin, Wenjie Luo, and Raquel Urtasun. 2018. “PIXOR: Real-
Time 3D Object Detection from Point Clouds.” In CVPR, 7652–60.

Yang, Honghui, Sha Zhang, Di Huang, Xiaoyang Wu, Haoyi Zhu,
Tong He, Shixiang Tang, et al. 2024. “UniPAD: A Universal Pre-
Training Paradigm for Autonomous Driving.” In CVPR.

Yang, Jiawei, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook
Kim, Boyi Li, Tong Che, et al. 2023. “EmerNeRF: Emergent
Spatial-Temporal Scene Decomposition via Self-Supervision.” arXiv
Preprint arXiv:2311.02077.

Yang, Weixiang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin Ma, Shengfeng
He, and Jia Pan. 2021. “Projecting Your View Attentively: Monoc-
ular Road Scene Layout Estimation via Cross-View Transforma-
tion.” In CVPR, 15536–45.

Yang, Yibo, Stephan Mandt, Lucas Theis, et al. 2023. “An Introduc-

https://en.wikipedia.org/wiki/Radio_navigation
https://en.wikipedia.org/wiki/Deflate
https://en.wikipedia.org/wiki/Snappy_(compression)

learning rich representations for robot state estimation 147

tion to Neural Data Compression.” Foundations and Trends® in
Computer Graphics and Vision 15 (2): 113–200.

Yang, Yongxin, and Timothy M Hospedales. 2017. “Trace Norm Reg-
ularised Deep Multi-Task Learning.” In ICLR Workshop Track.

Yang, Ze, George Chen, Haowei Zhang, Ta Kevin, Ioan Andrei Bârsan,
Daniel Murphy, Sivabalan Manivasagam, and Raquel Urtasun.
2024. “UniCal: Unified Neural Sensor Calibration.” In ECCV.

Yang, Ze, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-
Chiu Ma, Anqi Joyce Yang, and Raquel Urtasun. 2023. “UniSim:
A Neural Closed-Loop Sensor Simulator.” In CVPR, 1389–99.

Yao, Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, and Long
Quan. 2019. “Recurrent MVSNet for High-Resolution Multi-View
Stereo Depth Inference.” In CVPR, 5525–34.

Yoneda, Keisuke, Hossein Tehrani, Takashi Ogawa, Naohisa Hukuyama,
and Seiichi Mita. 2014. “Lidar Scan Feature for Localization with
Highly Precise 3-D Map.” In IV.

You, Yurong, Katie Z Luo, Xiangyu Chen, Junan Chen, Wei-Lun
Chao, Wen Sun, Bharath Hariharan, Mark Campbell, and Kilian Q
Weinberger. 2022. “Hindsight Is 20/20: Leveraging Past Traversals
to Aid 3d Perception.”

You, Yurong, Katie Luo, Cheng Perng Phoo, Wei-Lun Chao, Wen Sun,
Bharath Hariharan, Mark Campbell, and Kilian Q Weinberger.
2022. “Learning to Detect Mobile Objects from Lidar Scans With-
out Labels.” In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 1130–40.

Zagoruyko, Sergey, and Nikos Komodakis. 2015. “Learning to Com-
pare Image Patches via Convolutional Neural Networks.” In
CVPR.

Zamir, Amir R, Asaad Hakeem, and Richard Szeliski. 2016. Large-
Scale Visual Geo-Localization. Springer. https://doi.org/10.1007/
978-3-319-25781-5.

Zbontar, Jure, and Yann LeCun. 2015. “Computing the Stereo Match-
ing Cost with a Convolutional Neural Network.” In CVPR.

Zeng, Wenyuan, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Ser-
gio Casas, and Raquel Urtasun. 2019. “End-to-End Interpretable
Neural Motion Planner.” In CVPR, 8660–69.

Zeng, Wenyuan, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang,
and Raquel Urtasun. 2020. “DSDNet: Deep Structured Self-
Driving Network.” In ECCV.

Zhang, Chris, Wenjie Luo, and Raquel Urtasun. 2018. “Efficient
Convolutions for Real-Time Semantic Segmentation of 3D Point
Clouds.” In 3DV.

Zhang, Jeffrey O, Alexander Sax, Amir Zamir, Leonidas Guibas, and
Jitendra Malik. 2020. “Side-Tuning: A Baseline for Network Adap-

https://doi.org/10.1007/978-3-319-25781-5
https://doi.org/10.1007/978-3-319-25781-5

learning rich representations for robot state estimation 148

tation via Additive Side Networks.” In ECCV.
Zhang, Ji, and Sanjiv Singh. 2014. “LOAM: Lidar Odometry and

Mapping in Real-Time.” In RSS.
Zhang, Lunjun, Anqi Joyce Yang, Yuwen Xiong, Sergio Casas, Bin

Yang, Mengye Ren, and Raquel Urtasun. 2023. “Towards Unsu-
pervised Object Detection from LiDAR Point Clouds.” In CVPR,
9317–28.

Zhang, Wenxiao, and Chunxia Xiao. 2019. “PCAN: 3D Attention Map
Learning Using Contextual Information for Point Cloud Based
Retrieval.” In CVPR.

Zhang, Zhishuai, Jiyang Gao, Junhua Mao, Yukai Liu, Dragomir
Anguelov, and Congcong Li. 2020. “STINet: Spatio-Temporal-
Interactive Network for Pedestrian Detection and Trajectory Pre-
diction.” In CVPR.

Zhang, Zichao, and Davide Scaramuzza. 2020. “Fisher Information
Field: An Efficient and Differentiable Map for Perception-Aware
Planning.” arXiv Preprint arXiv:2008.03324.

Zhao, Hengshuang, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and
Jiaya Jia. 2017. “Pyramid Scene Parsing Network.” In CVPR.

Zheng, Stephan, Yisong Yue, and Jennifer Hobbs. 2016. “Generating
Long-Term Trajectories Using Deep Hierarchical Networks.” In
NIPS.

Zhou, Brady, Philipp Krähenbühl, and Vladlen Koltun. 2019. “Does
Computer Vision Matter for Action?” Science Robotics 4 (30).

Zhou, Qian-Yi, Jaesik Park, and Vladlen Koltun. 2016. “Fast Global
Registration.” In ECCV.

Zhou, Qunjie, Sérgio Agostinho, Aljoša Ošep, and Laura Leal-Taixé.
2022. “Is Geometry Enough for Matching in Visual Localization?”
In ECCV, 407–25. Springer.

Zhou, Yao, Guowei Wan, Shenhua Hou, Li Yu, Gang Wang, Xiaofei
Rui, and Shiyu Song. 2020. “DA4AD: End-to-End Deep Atten-
tion Aware Features Aided Visual Localization for Autonomous
Driving.” In ECCV.

Zhu, Sijie, Linjie Yang, Chen Chen, Mubarak Shah, Xiaohui Shen, and
Heng Wang. 2023. “R2Former: Unified Retrieval and Reranking
Transformer for Place Recognition.” In CVPR, 19370–80.

Zhu, Zihan, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao,
Zhaopeng Cui, Martin R Oswald, and Marc Pollefeys. 2022.
“NICE-SLAM: Neural Implicit Scalable Encoding for SLAM.”
In CVPR, 12786–96.

Ziegler, Julius, Henning Lategahn, Markus Schreiber, Christoph
G Keller, Carsten Knoppel, Jochen Hipp, Martin Haueis, and
Christoph Stiller. 2014. “Video Based Localization for Bertha.” In
IV.

	Introduction
	Current Challenges
	Key Contributions
	Relation to Published Work
	Other Research During My PhD Study
	About This Thesis

	Background and Related Work
	3D Geometry Notation
	LiDAR Sensors
	Self-Driving Vehicles
	Localizing Ground Robots using Histogram Filtering
	Related Work

	Localization with Sparse Semantic Maps
	Introduction
	Lightweight HD Mapping
	Localization as Bayes Inference with Deep Semantics
	Experimental Evaluation
	Conclusion

	LiDAR Matching with Deep Representations
	Introduction
	Learning LiDAR Representations for Localization
	Experimental Results
	Conclusion

	Task-Specific Map Compression
	Overviews and Motivation
	End-to-End Compressed Localization
	Experimental Results

	Towards Full-System Understanding: Joint Localization and Perception
	Overview
	Background
	The Effects of Localization Error
	Joint Localization, Perception, and Prediction
	Experiments
	Conclusion

	Large-Scale Analysis: The Pit30M Dataset
	Overview
	Current Localization Datasets
	Pit30M: Global Localization at City Scale
	Case Study: Benchmarking Large-Scale Global Localization
	Case Study: Experiments
	Practical Matters: Releasing a Petabyte-Scale Dataset
	Conclusion

	Conclusions and Future Directions
	Summary
	Future Work
	Outlook

	Bibliography

