Learning to Localize Using a LIDAR Intensity Map
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Motivation

e Robust and accurate localization is one of the cornerstones
of an autonomous driving stack.

o Goal: Perform real-time online localization w.r.t. an HD
LiDAR intensity map with centimeter-level accuracy.

o Challenges

Lack of Geometric Cues

Dynamic Ob]ects

o Past approaches:

- suffer in geometrically degenerate environments, e.g.,
bridges

- cannot generalize to different LiDARs without calibration.

Probabilistic Localization

e We learn to match between online sensory observations and
a map.

e We incorporate this learned component into a histogram
filter together with GPS information:
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Different LiDAR Types

This gives us a probability distribution over the vehicle pose in world coords.
The discretization is centered around the dead reckoning pose.

online and map embedding networks
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Intensity Map Deep Map Embedding

Deep Online Embedding
(rotated n, times)

Online LIDAR Sweeps

o At each time step we exhaustively search the space x = (x, y,
0) around the dead reckoning pose for the best match.
o Obtain current pose from Bel :
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e Matching in (x, y) is equivalent to a 2D correlation, which
we perform in the Fourier domain for performance reasons.

Matching in spatial domain: 26.7ms
Matching in Fourier domain: 1.4ms
=p Real-time system performance: 15Hz on a GPU

 The learned component of our system is the LIDAR match-
ing, i.e., PipAR in the above diagram.

o The embedding nets use the LinkNet architecture.

« Embeddings are learned by backpropagating through the
cross-correlation matching. We do not include the temporal
filtering or GPS components at train time.

» We use a cross-entropy loss whereby the score volume cor-
responding to the ground truth is a one-hot encoding of the
true offset between the online and the map data in a sample.

Examples of high-definition maps with centimeter-level resolution.
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o Tested on 280km of highway.
e 99th percentile error <20cm (lane marker = 15cm wide).

Table 1: Localization Performance on Highway-LidarA Dataset (Per Sequence)

Median Error (cm) Failure Rate (%)
Method Motion Prob Lat Lon Total < 100m <500m < End
Dynamics Yes No 43921 863.68 1216.01 0.46 08.14 100.00
Raw LiDAR Yes No 1245.13 59043 1514.42 1.84 81.02 02.49
ICP Yes No 1.52 5.04 5.44 3.50 5.03 7.14
Ours (LinkNet) No No 3.87 4.99 7.76 0.35 0.35 0.72
Ours (LinkNet) Yes No 3.81 4.53 7.18 1.06 1.06 1.44
Ours (LinkNet) Yes Yes 3.00 4.33 6.47 0.00 0.00 0.00

Table 2: Localization Performance on Misc-LidarB trained on Highway-LidarA (Per Sequence)

Median Error (cm) Failure Rate (%)
Method Motion Prob Lat Lon Total < 100m <500m < End
Dynamics Only Yes No 195.73 322.31 468.53 6.13 68.66 84.26
ICP Yes No 2.57 15.29 16.42 0.46 28.43 37.53
Ours (Transfer) Yes No 6.95 6.38 11.73 0.00 0.71 1.95
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