Uber ATG

Learning to Localize Using a LiDAR Intensity Map

Andrei Bârsan*,1,2, Shenlong Wang*,1,2, Andrei Pokrovsky1, Raquel Urtasun1,2

1 Uber ATG, 2 University of Toronto

1

Motivation

- Robust and accurate localization is one of the cornerstones of an autonomous driving stack.
- Goal: Perform real-time online localization w.r.t. an HD LiDAR intensity map with centimeter-level accuracy.
- Challenges:

Dynamic Objects

Lack of Geometric Cues

Different LiDAR Types

- Past approaches:
- suffer in geometrically degenerate environments, e.g., bridges
- cannot generalize to different LiDARs without calibration.

2

Probabilistic Localization

- We learn to match between online sensory observations and a map.
- We incorporate this learned component into a histogram filter together with GPS information:

$$\operatorname{Bel}_{\Lambda}(\mathbf{x}) = \eta \cdot P_{\operatorname{LiDAR}}(\mathcal{I}_t | \mathbf{x}; \mathbf{w}) \quad P_{\operatorname{GPS}}(\mathcal{G}_t | \mathbf{x}) \quad \operatorname{Bel}_{t|t-1}(\mathbf{x} | \mathcal{X}_t)$$

This gives us a probability distribution over the vehicle pose in world coords. The discretization is centered around the dead reckoning pose.

- At each time step we exhaustively search the space $\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{\theta})$ around the dead reckoning pose for the best match.
- Obtain current pose from Bel₁:

$$\mathbf{x}_t^* = \frac{\sum_{\mathbf{x}} \mathrm{Bel}_t(\mathbf{x})^{\alpha} \cdot \mathbf{x}}{\sum_{\mathbf{x}} \mathrm{Bel}_t(\mathbf{x})^{\alpha}}$$

• Matching in (x, y) is equivalent to a 2D correlation, which we perform in the Fourier domain for performance reasons.

Matching in spatial domain: 26.7ms
Matching in Fourier domain: 1.4ms

→ Real-time system performance: 15Hz on a GPU

- The learned component of our system is the LiDAR matching, i.e., $P_{\rm LiDAR}$ in the above diagram.
- The embedding nets use the LinkNet architecture.
- Embeddings are learned by backpropagating through the cross-correlation matching. We do not include the temporal filtering or GPS components at train time.
- We use a cross-entropy loss whereby the score volume corresponding to the ground truth is a one-hot encoding of the true offset between the online and the map data in a sample.

Examples of high-definition maps with centimeter-level resolution.

Results

- Tested on 280km of highway.
- 99th percentile error <20cm (lane marker = 15cm wide).

Table 1: Localization Performance on Highway-LidarA Dataset (Per Sequence)

		_	Median Error (cm)			Failure Rate (%)		
Method	Motion	Prob	Lat	Lon	Total	≤ 100m	$\leq 500 \mathrm{m}$	$\leq End$
Dynamics	Yes	No	439.21	863.68	1216.01	0.46	98.14	100.00
Raw LiDAR	Yes	No	1245.13	590.43	1514.42	1.84	81.02	92.49
ICP	Yes	No	1.52	5.04	5.44	3.50	5.03	7.14
Ours (LinkNet)	No	No	3.87	4.99	7.76	0.35	0.35	0.72
Ours (LinkNet)	Yes	No	3.81	4.53	7.18	1.06	1.06	1.44
Ours (LinkNet)	Yes	Yes	3.00	4.33	6.47	0.00	0.00	0.00

Table 2: Localization Performance on Misc-LidarB trained on Highway-LidarA (Per Sequence)

			Median Error (cm)			Failure Rate (%)			
Method	Motion	Prob	Lat	Lon	Total	≤ 100m	$\leq 500 \mathrm{m}$	\leq End	
Dynamics Only	Yes	No	195.73	322.31	468.53	6.13	68.66	84.26	
ICP	Yes	No	2.57	15.29	16.42	0.46	28.43	37.53	
Ours (Transfer)	Yes	No	6.95	6.38	11.73	0.00	0.71	1.95	

