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Dynamic Environments
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1. Problem and Contributions

Problem

® Most mapping systems assume the environment

is static or treat dynamic entities as noise.

® Dense mapping typically requires large amounts

of GPU memory.

Contributions

® Online dense mapping system that reconstructs:

O Environment map

O Moving objects

O Potentially moving objects
® Performs low-overhead map pruning to signifi-
cantly reduce memory footprint.
® Scales to large environments, such as entire
neighborhoods.

2. Method

Current Stereo Pairs

Input Stereo Sequence

Current
Left
Frame

Preprocessing

Dense Depth Maps

Object Segmentation

J
108[qo paswbas yoes Jo4

Current and Previous
Stereo Pairs

3. Results

® Evaluation performed on the KITTI dataset.
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® Use LIDAR as depth ground truth.
e Compare two depth from stereo methods:
O ELAS [Geiger et al., "Efficient large-scale stereo matching." ACCV, 2010.]

Camera Egomotion

O DiSpNEt [Mayer, et al. "A large dataset to train convolutional networks for disparity, optical
flow, and scene flow estimation.” CVPR 2016.]

® We also show that map pruning can substantially reduce memory

usage with only a small loss in map quality.
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Problem: 3D from stereo produces streak-
like artifacts near object boundaries

J Solution: enforce temporal consistency
and prune spurious structures in the map.
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Reconstruction performed using the
InfiniTAM system, leveraging voxel
block hashing for efficient
measurement fusion.
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Additional Information

e Supplementary results as well as the
video and source code are available on the
project website:
andreibarsan.github.io/dynslam

® The experiments use both ELAS and
DispNet to compute depth from stereo
because they leverage very different
approaches: ELAS is geometry-focused, and
DispNet is learning-focused.
® The visual odometry and the sparse
scene flow are computed using libviso2.
® The semantic instance segmentation is
computed using the multi-task network
cascade (MNC) architecture.
e Directions for future work include:

o Improved speed

o Global consistency (loop closures)

O More robust vehicle tracking in 3D
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