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Motivation

» Centimeter-level localization is a key task for self-driving.
» Learning to match observations to maps shown to be highly effective.
» Detailed maps can have very demanding storage requirements.

» Goals:
Low Storage & Fast Deployment & High-Accuracy
Transfer Costs Update Times Localization

» Address his by learning a compression scheme optimal for localization by
jointly learning localization and compression.

Related Work

» Learning-based Online Localization

» Learning to Localize Using a LiDAR Intensity Map (I. A. Barsan et al,
CoRL ’18, our previous work) showed it is viable to cast localization as a
learnable matching task.

» L3-Net by Lu et al., 2019 presents a system which learns to match point
clouds for localization in an end-to-end pipeline.

» Learning-based Image Compression
» RNN-based (Toderici et al, ’15, ’16’,’17, etc.)
» GAN-based (Rippel & Bourdev’17, Augustsson ‘18)
» Task-specific compression (videos, faces, medical imagery)

Probabllistic Localization

» Our goal is to perform online localization, and compute a centimeter-level
accurate map-relative pose of the AV at every time step.

» The poses are parameterized with three degrees of freedom (x, y, yaw).
» Localization follows a standard histogram filtering formulation.
» We train the matching module leveraged in the update step of the filter.

» This 3D search space is discretized, and searched exhaustively around the
predicted pose at each time.

» Predicted pose = past pose + integrated IMU & wheel encoders.
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» The LIDAR matching depicted below is trained to match observations to
compressed maps, using a learned matching method.
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» Note: No need to compress online observations (never stored).
» Input LiIiDAR and maps are all in bird’s-eye view (2D).

» We compute feature embeddings for online data and for map data such
that matching accuracy is maximized.

» Train with compression in the loop to reduce the map’s bitrate.

» Build good sparse binary representations such that Huffman and Run-
Length Encoding can do a very good job.
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» Training to (1) maximize matching performance while (2) minimizing code
length and (3) ensuring the binarization-induced error is minimal.
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(1) Localization term: Cross-entropy between predicted 3D
(x,y, yaw) score map and ground truth one-hot offset.
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(2) Entropy in the mini batchis a d|fferent|able surrogate of code length.
_ _ = 1
gCODELEN(p) = plogp P= wxgxB ZZ Pi

(3) Minimize per-pixel entropy to reduce hard binarization-induced error.
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PNG WebP Ours Ours
(1%) (Recon.) (Task)
Storage for the Full US Road Network in TiB
Method Median error (cm) Failure rate (%) Bit per pixel
Lat Lon Total < 100m <500m End
Lossless (PNG) 1.55 2.05 3.09 0.00 1.09 2.44 4.94
JPG-5 432 548 841 0.00 1.09  1.25 0.18
JPG-50 329 560 7.59 0.00 1.09  5.26 1.03
WebP-5 1.65 575 6.53 2.04 543  13.95 0.30
WebP-50 1.62 275 3.76 0.00 326  3.30 1.05
Ours 1.61 226 347 0.00 1.09 1.22 0.0083

Comparison to non-learning baselines on our urban dataset.

Method Median error (cm) Failure rate (%) Bit per pixel
Lat Lon Total <100m <500m End

Lossless (PNG) 1.55 2.05 3.09 0.00 1.09 2.44 4.93580

Ours (recon, 8X) 1.59 2.16 3.24 0.00 1.09 1.22 0.02689

Ours (recon, 16x) 1.76 248  3.62 0.00 0.00 2.56 0.01155

Ours (match, 8 X) 1.61 226 347 0.00 1.09 1.22 0.00830

Ours (match, 16 x) 1.62 2777 384 1.00 2.17  4.26 0.00733

Comparison to learning-based baselines on our urban dataset.

Method Median Err (cm) Failure Rate (%) b/m?
Lat Lon Total < 100m <500m End

PNG, 5cm/px 1.55 205 3.09 0.00 1.09 2.44 1948.55

PNG, 10cm/px 4.37 6.68 9.50 3.19 3.26 400 402.84

JPG@50, 10cm/px  4.51 5.78 8.95 0.00 1.09 10.64  63.42
PNG, 15cm/px 15.73 23.66 31.73 10.31 20.65 22.03 173.97
JPG@50, 15cm/px 11.67 18.20 25.14 9.28 13.04 16.28  29.00
Ours (16x) 1.76 248  3.62 0.00 0.00 2.56 2.87

Ablation: Error, Failure Rate and bits/m2as a function of map resolution (cm/px).

Conclusions & Outlook

» This work addresses one of the main challenges associated with high-
definition maps: storage.

» We’ve shown that task-specitic compression can improve over general-
purpose compression, allowing giant maps to be kept in-memory.

» Several avenues for future work remain, including:

» Investigating methods for compressing 3D point clouds and doing full
six-degrees-of-freedom localization.

» End-to-end learning with the pose filter in the loop, similar to L3-Net.
» Learning with mapping-in-the-loop.




