
‣ Vehicle ego-localization is considered a key task for self-driving, as it enables the 
use of HD maps—strong priors for numerous tasks


‣ The effects of localization error on autonomy systems remain unquantified

‣ Perception and prediction (P2) rely on localization, but are usually performed 

independently after localization

‣ Learning-based localization methods are robust but computationally expensive

‣ We have three main goals:
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‣ How do localization errors affect autonomy systems?

‣ We systematically increase translational and rotational error, and evaluate the 

Implicit Latent Variable Model (ILVM) [Casas et al, ’20] for P2 and the Path-
Lateral Time (PLT) motion planner [Sadat et al, ’19]


‣ Our results suggest that small localization errors may be acceptable for 
autonomy

‣ We have investigated the effects of localization error on 
perception, prediction, and motion planning


‣ Localization can be accelerated dramatically by sharing 
computation with perception, while retaining accuracy—
localization adds just 2ms of overhead!


‣ Several avenues for future work remain, including:

‣ Evaluate performance in closed loop simulation

‣ Three main design considerations in mind for our joint localization, perception, 
and prediction (LP2) system:

1. Low latency, and low overhead on top of the P2 system

2. Learning-based localization for robustness against dynamic objects and 

LiDAR intensity miscalibration, and to re-use computation from the P2 side

3. Easier to train, evaluate, and deploy than its separate counterparts

‣ At different localization inference time budgets, our method is oftentimes more 
accurate in terms of localization error than running localization and P2 
independently (sequentially)

Localization error and autonomy3.
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‣ Localization: We compute a matching score map using cross correlation 
between the LiDAR embedding  and the map embedding : 

                 , 

where  is a function that warps its first argument based on the 3-DoF offset 


‣ The most likely pose is simply the  of the matching score maps

‣ The localization task is trained using the cross entropy loss between the 

matching score map and a one-hot encoded ground truth: 
                                   


‣ Perception-prediction (P2): We process voxelized LiDAR with a “heavy” 
backbone , and combine it with a lightweight processing of the 
rasterized semantic map to obtain dynamic objects and their future trajectories. 
This corresponds to the ILVM model using the pose computed by the localization 
module to rasterize the map


‣ Optimization: The localization module (upper part) is trained after freezing the 
perception-prediction model (bottom part) via side-tuning, which was necessary 
to avoid catastrophic forgetting


‣ Feature sharing: Importantly, we re-use upscaled features from the P2 module 
for the localization subsystem. This is crucial to achieve low latency
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‣ Learning-based Perception and Prediction 
(P2): LiDAR + high-definition maps to improve 
motion forecasting [Casas et al, ’20]


‣ Learning-based online localization: It is viable 
to cast localization as a learnable matching task 
[Bârsan et al, ’18]


‣Multitask Learning:  We use side-tuning, which 
adds a small side-network to an existing network 
to reuse the features of a strong backbone in a 
new task, while avoiding catastrophic forgetting

Model Time (ms) recall@1 recall@2
LiDAR Localizer 25.92 0.52 0.95
LiDAR Localizer (Pixor-based) 2.79 0.47 0.95
Joint LP2 (Ours) 1.95 0.49 0.95

‣ Thoroughly comparing classical localization approaches with this method

‣ Further investigate localization failure cases by classifying collisions according 

to severity

‣ The best results are achieved with an ILVM that has access to perfect (GT) 
localization — as it is often benchmarked — but this is unrealistic in practice


‣ We then simulated noise in the localizer (N) affecting either the P2 system, the 
motion planner, or both: this increases collision rates and the distance between 
the trajectory of the motion planned and that of an expert human driver


‣ Our method allows the system to relocalize, improving both key motion planning 
metrics. Although localization is not perfect, this is tolerable for autonomy as 
shown in our previous experiments

‣ Joint LP2 system benchmark, focusing on on motion planning:

Separate LiDAR 
localization and 

perception

Model P2 pose 
(GT, N)

Planning Pose 
(GT, N)

r@1 ↑ 
(%)

r@2 ↑ 
(%)

Collision ↓ 
(% up to 5s)

L2 human ↓ 
(m @ 5s)

ILVM GT GT - - 2.915 4.64
ILVM GT N - - 3.168 4.68
ILVM N N - - 3.511 4.70

Joint LP2 — Ours (Tiny Pixor) N N 46.6 93.5 2.962 4.64
Joint LP2 — Ours (Big Pixor) N N 52.5 96.9 2.922 4.64


