
Deep Point Cloud
Registration
Uber ATG Toronto Reading Group

September 12, 2019

Presenter: Andrei Bârsan

01 Overview & Motivation
02 Background: Point Cloud Registration
03 How Can Learning Help?
04 DeepVCP & L3-Net
05 Deep Closest Point
06 Discussion

Agenda

Overview & Motivation

● Point cloud data is ubiquitous

● Purely geometric methods can work very well

○ But limitations remain (dynamic objects, noisy data, domain shift, some

need good initialization)

● Learning can help with this!

○ Learning + point clouds = relatively new

● Please feel free to stop me if you have any question!

Overview & Motivation Cont’d

● Focus here: point cloud registration

● Applications:

○ ⚕ Medical image processing

○ 🏃 Motion estimation

○ 🚗 Localization, mapping, SLAM

Background: Types of 3D Data

● Point sets (with or without normals)

● Surfels

● Implicit surfaces

● Parametric surfaces

● Voxels

● Meshes

This talk

Image Source: Real Time Stable
Haptic Rendering Of 3D

Deformable Streaming Surface

Local Global

Images

Point
Clouds

Background: Registration

e.g. features +
RANSACe.g. direct SLAM

e.g. Iterative
Closest Point

e.g. Fast Global
Registration

Sources: LSD-SLAM, OpenCV Tutorial, https://www.youtube.com/watch?v=uzOCS_gdZuM, Intel

https://www.youtube.com/watch?v=uzOCS_gdZuM

Background: ICP

● ICP = Iterative Closest Point

○ Local method for point cloud registration

○ Needs good initialization

Called with a few lines of code in Open3D

http://www.open3d.org/docs/release/tutorial/Basic/icp_registration.html
http://www.youtube.com/watch?v=uzOCS_gdZuM

Background: ICP Objective

● ICP = Iterative Closest Point

● Mathematical formulation:

○ Given two corresponding point sets

○ Solve:

⚠ Strong assumption!
○ Different # of points?
○ Unknown correspondences?
○ Missing correspondences?
○ Noisy measurements?
○ etc.

Background: ICP Algorithm

● Inputs:

○ Point clouds: P and Q

○ Initial transform: T0

● while (not converged):

○ (1) For each p in P pick closest neighbor qp in TiQ

○ (2) Solve for rigid motion T’ from correspondences (p, qp)

○ (3) Update Ti+1 := T’Ti

Background: Limitations of ICP

● (1) What is the closest neighbor?

○ Distance function? Normals? Weighting?

● (2) Noisy data and outliers?

○ Dynamic objects?

● (3) Scalability? (100k+ points)

● (4) Initialization

○ If you don’t have a good initial guess…

○ ...you’re gonna have a bad time!

?

How Can Learning Help?

● Image-based method benefit from learning

○ Image nearest neighbor: NetVLAD >> VLAD

○ Classification: CNNs >> Bag-of-visual-words

● Learning also helps with point cloud tasks:

○ Classification: PointNet, DGCNN

○ Segmentation: PointNet, ContConv

● Can learn which areas make the best matches.

DeepVCP (Lu et al., ICCV ‘19)

● VCP = Virtual Corresponding Points

● Not iterative; solves for transform directly.

● Uses LiDAR (with intensity), and aligns over 6-DoF

○ x, y, z, roll, pitch, yaw

● Local method (needs good initialization T0!)

○ Virtual point computation depends on it

● Evaluated on KITTI, Apollo-SouthBay, 3DMatch,

Terrestrial Laser Scanners (TLS)

(Formerly known as DeepICP)

DeepVCP

● Problems & solutions:

1. Lots of points! (N points)

⇨ Compute a high-dim feature for each LiDAR point

⇨ Compute a saliency score for each point and pick top-M << N for matching

2. Exact match for a point p in P may not exist in Q!

⇨ Generate multiple “matches” along a fixed grid around p’s projection in Q

● Projection based on the initial guess transform T0

⇨ Each match’s features depend on features in the target point cloud

⇨ Assign score to each generated “match”

⇨ Score-weighted average of matches is the “virtual point” (p’s correspondent)

DeepVCP

Source Point
Cloud

Target
Point Cloud

Projected
Point T0pProject with T0

Sampled
Coordinates

p

0.0 0.1 0.0 0.0 0.0

0.0 0.2 0.1 0.1 0.1

0.0 0.1 0.3 0.3 0.2

0.1 0.2 0.6 0.6 0.4

0.2 0.3 0.4 0.9 0.4

Dot product between
each sampled coord.

feature and p
CNN + Softmax

+ Weighted
Sum

q = p’s virtual
closest point (VCP)

Once we have (p, q) matches ∀
p, solve for the optimal rigid
transform T with SVD.

Initial guess

q

DeepVCP: Method

DeepVCP: Details

● No iteration like in vanilla Iterative Closest Point

● Loss:

○ First, L1 between

■ computed position of p’s virtual closest point (VCP)
■ true position under the GT transform

○ (Then, actually solve for rigid transform.)

○ Next, L1 between

■ computed position of p using estimated transform

■ true position under the GT transform

DeepVCP: Results
Results on
KITTI
dataset.

Similar
numbers on
SouthBay.

Much better
worst-case
behavior.

DeepVCP: Conclusions

● Good worst-case guarantees (better than ICP)

● For each point in source, “predict” position in target

● Then solve for 6-DoF transform with SVD

● Limitations:

○ Still local (relies on good initialization)

○ No temporal consistency (see L3-Net for that)

○ Spatial information aggregation relatively simple (KNN)

L3-Net (Lu et al., CVPR ‘19)

● Same group as DeepVCP.

● TL; DR: Basically DeepVCP but...

a. not end-to-end,

b. temporally consistent predictions (RNN-based),

c. 3-DoF (x, y, yaw) instead of 6-DoF (x, y, z, yaw, pitch, roll), and

d. (learned) cost volume inference instead of solver.

How About Approaching the Problem
Differently?

Deep Closest Point (Wang & Solomon)

● Also not iterative; solves for transform directly.

● Uses just 3D data (no intensity), and aligns over 6-DoF

○ (x, y, z, roll, pitch, yaw)

● Global method

○ Each point in P attends to each point in Q

○ No “guess” transform T0 assumed

● Very well-written paper IMHO, great primer on ICP itself!

● Evaluated (only) on ModelNet40

Deep Closest Point: Method

Backbone
Feature

Networks

Point2Point
“Affinity”

(n2)

Use soft attention
to compute a “soft

match” in Y for
each point in X

Solve for
rigid

transform
(SVD)

Does
this
sound
familiar?

Deep Closest Point: Method Details

● Backbones (embed points [N x 3] → [N x D]):

○ PointNet

○ Dynamic Graph CNN (build k-NN graph and run GNN inference)

[N x P] [N x P] [N x P]
(Asymmetric

attention-based
fusion.)

Deep Closest Point: Method Details

● Attention

○ Fx = features of point cloud X

○ ϕ = fuses information from one point

cloud’s features into the other (O(n2)

!!!1 in number of points)

Deep Closest Point: Method Details

● Generate soft assignments

between X and Y

● Soft assignments between X

and Y points ⇒ hard

assignments between X and

weighted sums of points in Y.

[N x P] [N x P] [N x P]
(Asymmetric

attention-based
fusion.)

Deep Closest Point: Rigid Transform

● Once we have hard correspondences, nothing fancy

● SVD

○ Can backpropagate through SVD solver in TF and PyTorch

○ (Don’t try to implement this at home, kids! ;)

Deep Closest Point: Training & Results

● Train using GT transforms with a regression loss

Recap
DeepVCP L3-Net Deep Closest Point

Type local, 6-DoF local, 3-DoF global, 6-DoF

Input points+intensity points+intensity points

Features learned keypoint selection,
learned feats

handcrafted keypoints,
learned feats

use all points, learned feats

Matching search locally for “virtual match” search locally for “virtual
match”

PointerNet to find “virtual
match” in ENTIRE target

Inference SVD Learned cost volume
aggregation

SVD

Datasets KITTI, SouthBay, 3DMatch, TLS SouthBay ModelNet40

Run Time 2sec on GPU 120ms on GPU 10--750ms on GPU
(quadratic in nr of points!)

Conclusion promising (esp. in worst case)
but still quite slow

looks robust but evaluation
metrics could be stricter

looks good but no real-world
evaluation

Discussion

● Point cloud registration still an open problem

● Clearly benefits from learning

○ cf. challenges with dynamic objects, intensity calibration, outliers

● If we can leverage temporal dimension we should do it!

● Challenges remain:

○ E2E learning can be slow

○ Need larger benchmarks, real-world data and tougher metrics

Future Work

● Even a naive combination of the two methods already has

great potential IMHO

1. Fancier backbones (e.g., DGCNN) should help in DeepVCP

2. Downsample feature point clouds like in DeepVCP

■ Keeps quadratic attention blow-up under control

3. Global attention like in DCP makes the whole method global

■ Should improve robustness a LOT

References
● Pomerleau, F., Colas, F., & Siegwart, R. (2015). A Review of Point Cloud Registration Algorithms for Mobile

Robotics. Foundations and Trends in Robotics, 4(1), 1–104. https://doi.org/10.1561/2300000035
○ A great recent survey on the ICP family applied to robotics. Very comprehensive (>100 pages) but easy

to skim and browse.
● Elbaz, G., Avraham, T., & Fischer, A. (2017). 3D point cloud registration for localization using a deep neural

network auto-encoder. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017-Janua, 2472–2481. https://doi.org/10.1109/CVPR.2017.265

● Ding, L., & Feng, C. (2018). DeepMapping: Unsupervised Map Estimation From Multiple Point Clouds.
Retrieved from http://arxiv.org/abs/1811.11397

● Park, J., Zhou, Q. Y., & Koltun, V. (2017). Colored Point Cloud Registration Revisited. Proceedings of the IEEE
International Conference on Computer Vision, 2017-Octob, 143–152. https://doi.org/10.1109/ICCV.2017.25

● Lu, W., Zhou, Y., Wan, G., Hou, S., & Song, S. (2019). L3-Net : Towards Learning based LiDAR Localization for
Autonomous Driving. CVPR. Long Beach: IEEE.

● Zhao, H., Jiang, L., & Jiaya, C. F. (n.d.). PointWeb : Enhancing Local Neighborhood Features for Point Cloud
Processing. 1, 5565–5573.

● Lu, W., Wan, G., Zhou, Y., Fu, X., Yuan, P., & Song, S. (2019). DeepICP: An End-to-End Deep Neural Network
for 3D Point Cloud Registration. Retrieved from http://arxiv.org/abs/1905.04153

https://doi.org/10.1561/2300000035

Thank you!
Q & A

