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Overview & Motivation

● Point cloud data is ubiquitous

● Purely geometric methods can work very well

○ But limitations remain (dynamic objects, noisy data, domain shift, some 

need good initialization)

● Learning can help with this!

○ Learning + point clouds = relatively new

● Please feel free to stop me if you have any question!



Overview & Motivation Cont’d

● Focus here: point cloud registration

● Applications:

○ ⚕ Medical image processing

○ 🏃 Motion estimation

○ 🚗 Localization, mapping, SLAM



Background: Types of 3D Data

● Point sets (with or without normals)

● Surfels

● Implicit surfaces

● Parametric surfaces

● Voxels

● Meshes

This talk
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Background: Registration

e.g. features + 
RANSACe.g. direct SLAM

e.g. Iterative 
Closest Point

e.g. Fast Global 
Registration

Sources: LSD-SLAM, OpenCV Tutorial, https://www.youtube.com/watch?v=uzOCS_gdZuM, Intel

https://www.youtube.com/watch?v=uzOCS_gdZuM


Background: ICP

● ICP = Iterative Closest Point

○ Local method for point cloud registration

○ Needs good initialization

Called with a few lines of code in Open3D

http://www.open3d.org/docs/release/tutorial/Basic/icp_registration.html
http://www.youtube.com/watch?v=uzOCS_gdZuM


Background: ICP Objective

● ICP = Iterative Closest Point

● Mathematical formulation:

○ Given two corresponding point sets

○ Solve:

⚠ Strong assumption!
○ Different # of points?
○ Unknown correspondences?
○ Missing correspondences?
○ Noisy measurements?
○ etc.



Background: ICP Algorithm

● Inputs: 

○ Point clouds: P and Q

○ Initial transform: T0

● while (not converged):

○ (1) For each p in P pick closest neighbor qp in TiQ

○ (2) Solve for rigid motion T’ from correspondences (p, qp)

○ (3) Update Ti+1 := T’Ti



Background: Limitations of ICP

● (1) What is the closest neighbor?

○ Distance function? Normals? Weighting?

● (2) Noisy data and outliers?

○ Dynamic objects?

● (3) Scalability? (100k+ points)

● (4) Initialization

○ If you don’t have a good initial guess…

○ ...you’re gonna have a bad time!

?



How Can Learning Help?

● Image-based method benefit from learning

○ Image nearest neighbor: NetVLAD >> VLAD

○ Classification: CNNs >> Bag-of-visual-words

● Learning also helps with point cloud tasks:

○ Classification: PointNet, DGCNN

○ Segmentation: PointNet, ContConv

● Can learn which areas make the best matches.



DeepVCP (Lu et al., ICCV ‘19)

● VCP = Virtual Corresponding Points

● Not iterative; solves for transform directly.

● Uses LiDAR (with intensity), and aligns over 6-DoF

○ x, y, z, roll, pitch, yaw

● Local method (needs good initialization T0!)

○ Virtual point computation depends on it

● Evaluated on KITTI, Apollo-SouthBay, 3DMatch, 

Terrestrial Laser Scanners (TLS)

(Formerly known as DeepICP)



DeepVCP

● Problems & solutions:

1. Lots of points! (N points)

⇨ Compute a high-dim feature for each LiDAR point

⇨ Compute a saliency score for each point and pick top-M << N for matching

2. Exact match for a point p in P may not exist in Q!

⇨ Generate multiple “matches” along a fixed grid around p’s projection in Q

● Projection based on the initial guess transform T0

⇨ Each match’s features depend on features in the target point cloud

⇨ Assign score to each generated “match”

⇨ Score-weighted average of matches is the “virtual point” (p’s correspondent)



DeepVCP

Source Point 
Cloud

Target
Point Cloud

Projected 
Point T0pProject with T0

Sampled 
Coordinates

p
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Dot product between 
each sampled coord. 

feature and p 
CNN + Softmax 

+ Weighted 
Sum

q = p’s virtual 
closest point (VCP)

Once we have (p, q) matches ∀ 
p, solve for the optimal rigid 
transform T with SVD.

Initial guess

q



DeepVCP: Method



DeepVCP: Details

● No iteration like in vanilla Iterative Closest Point

● Loss:

○ First, L1 between

■ computed position of p’s virtual closest point (VCP)
■ true position under the GT transform

○ (Then, actually solve for rigid transform.)

○ Next, L1 between

■ computed position of p using estimated transform

■ true position under the GT transform



DeepVCP: Results
Results on 
KITTI 
dataset. 

Similar 
numbers on 
SouthBay.

Much better 
worst-case 
behavior.



DeepVCP: Conclusions

● Good worst-case guarantees (better than ICP)

● For each point in source, “predict” position in target

● Then solve for 6-DoF transform with SVD

● Limitations:

○ Still local (relies on good initialization)

○ No temporal consistency (see L3-Net for that)

○ Spatial information aggregation relatively simple (KNN)



L3-Net (Lu et al., CVPR ‘19)

● Same group as DeepVCP.

●  TL; DR: Basically DeepVCP but...

a. not end-to-end,

b. temporally consistent predictions (RNN-based),

c. 3-DoF (x, y, yaw) instead of 6-DoF (x, y, z, yaw, pitch, roll), and

d. (learned) cost volume inference instead of solver.



How About Approaching the Problem 
Differently?



Deep Closest Point (Wang & Solomon)

● Also not iterative; solves for transform directly.

● Uses just 3D data (no intensity), and aligns over 6-DoF

○ (x, y, z, roll, pitch, yaw)

● Global method

○ Each point in P attends to each point in Q

○ No “guess” transform T0 assumed

● Very well-written paper IMHO, great primer on ICP itself!

● Evaluated (only) on ModelNet40



Deep Closest Point: Method

Backbone 
Feature 

Networks

Point2Point
“Affinity”

(n2)

Use soft attention 
to compute a “soft 

match” in Y for 
each point in X

Solve for 
rigid 

transform
(SVD)

Does 
this 
sound 
familiar?



Deep Closest Point: Method Details

● Backbones (embed points [N x 3] → [N x D]):

○ PointNet

○ Dynamic Graph CNN (build k-NN graph and run GNN inference)



[N x P] [N x P] [N x P]
(Asymmetric 

attention-based 
fusion.) 

Deep Closest Point: Method Details

● Attention

○ Fx = features of point cloud X

○ ϕ = fuses information from one point 

cloud’s features into the other (O(n2) 

!!!1 in number of points)



Deep Closest Point: Method Details

● Generate soft assignments 

between X and Y

● Soft assignments between X 

and Y points ⇒ hard 

assignments between X and 

weighted sums of points in Y.

[N x P] [N x P] [N x P]
(Asymmetric 

attention-based 
fusion.)  



Deep Closest Point: Rigid Transform

● Once we have hard correspondences, nothing fancy

● SVD

○ Can backpropagate through SVD solver in TF and PyTorch

○ (Don’t try to implement this at home, kids! ;)



Deep Closest Point: Training & Results

● Train using GT transforms with a regression loss



Recap
DeepVCP L3-Net Deep Closest Point

Type local, 6-DoF local, 3-DoF global, 6-DoF

Input points+intensity points+intensity points

Features learned keypoint selection, 
learned feats

handcrafted keypoints, 
learned feats

use all points, learned feats

Matching search locally for “virtual match” search locally for “virtual 
match”

PointerNet to find “virtual 
match” in ENTIRE target

Inference SVD Learned cost volume 
aggregation

SVD

Datasets KITTI, SouthBay, 3DMatch, TLS SouthBay ModelNet40

Run Time 2sec on GPU 120ms on GPU 10--750ms on GPU
(quadratic in nr of points!)

Conclusion promising (esp. in worst case) 
but still quite slow

looks robust but evaluation 
metrics could be stricter

looks good but no real-world 
evaluation



Discussion

● Point cloud registration still an open problem

● Clearly benefits from learning

○ cf. challenges with dynamic objects, intensity calibration, outliers

● If we can leverage temporal dimension we should do it!

● Challenges remain:

○ E2E learning can be slow

○ Need larger benchmarks, real-world data and tougher metrics



Future Work

● Even a naive combination of the two methods already has 

great potential IMHO

1. Fancier backbones (e.g., DGCNN) should help in DeepVCP

2. Downsample feature point clouds like in DeepVCP

■ Keeps quadratic attention blow-up under control

3. Global attention like in DCP makes the whole method global

■ Should improve robustness a LOT
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