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Overview & Motivation

e Point cloud data is ubiquitous

e Purely geometric methods can work very well

o But limitations remain (dynamic objects, noisy data, domain shift, some

need good initialization)
e | earning can help with this!
o Learning + point clouds = relatively new

e Please feel free to stop me if you have any question!



Overview & Motivation Cont’d

e [ocus here: point cloud registration

e Applications:

o %8 Medical image processing
o % Motion estimation

o = Localization, mapping, SLAM



Background: Types of 3D Data

e Point sets (with or without normals)

e Surfels

e Implicit surfaces ----..____
o Parametric surfaces " d i /

e \oxels -* =T
e Meshes 08 S laptic Rendering 013D

Deformable Streaming Surface



Background: Registration

Local Global

e.g. lterative 1 e.g. Fast Global
Closest Point Registration

Sources: LSD-SLAM, OpenCV Tutorial, https://www.youtube.com/watch?v=uzOCS gdZuM, Intel



https://www.youtube.com/watch?v=uzOCS_gdZuM

Background: ICP

e |CP = lterative Closest Point

o Local method for point cloud registration

o Needs good initialization

Called with a few lines of code in Open3D

open3d as o03d
is t numpy as np

if __name__ __main__'
source 3d. io. re:
target = o03d.io.read_r
threshold = 0.02
trans_init = np.asarray([[0.862, 0.011, -0.507, 0.5],
[-0.139, 0.967, -0.215, 0.7],
[0.487, @.255, 0.835, -1.4], [e.0, 0.0, 0.0, 1.0]])

point_cloud("../../TestData/ICP/cloud_bin_0.pcd")
nt_cloud("../../TestData/ICP/cloud_bin_1.pcd")

print("Apply point-to-plane ICP")

reg_p2l = o3d.registration.registration_icp(
source, target, threshold, trans_init,
o3d.registration.TransformationEstimationPointToPlane())

print(reg_p21)

int("Transformation is:")

int(reg_p21l.transformation)

print("")



http://www.open3d.org/docs/release/tutorial/Basic/icp_registration.html
http://www.youtube.com/watch?v=uzOCS_gdZuM

Background: ICP Objective

e |CP = lterative Closest Point

1. Strong assumption!

Different # of points?
Unknown correspondences?
Missing correspondences?
Noisy measurements?

etc.

o Mathematical formulatii)n:/

o Given two corresponding point sets

X =A{x1,...,xn}
Y ={y1,---,yn}

o O O O O

o Solve:

R*,t* = argming, 5 Y7, |2 — Ryi — ¢|°

n



Background: ICP Algorithm

e |nputs:

o Point clouds: P and Q

o Initial transform: To
e while (not converged):

o (1) For each p in P pick closest neighbor qa, inT.Q
o (2) Solve for rigid motion T’ from correspondences (p, qp)
o (3)Update T , =TT,



Background: Limitations of ICP

e (1) What /s the closest neighbor? \
o Distance function? Normals? Weighting?

e (2) Noisy data and outliers?
o Dynamic objects?

e (3) Scalability? (100k+ points)

e (4) Initialization

o If you don’t have a good initial guess...

o ...you're gonna have a bad time!



How Can Learning Help?

e |Image-based method benefit from learning

o Image nearest neighbor: NetVLAD >> VLAD

o Classification: CNNs >> Bag-of-visual-words
e [earning also helps with point cloud tasks:
o Classification: PointNet, DGCNN

o Segmentation: PointNet, ContConv

e (Can learn which areas make the best matches.



DeepVCP (Lu et al., ICCV ‘19)

e VCP = Virtual Corresponding Points
e Not iterative; solves for transform directly.

e Uses LIDAR (with intensity), and aligns over 6-DoF
o XY, z, roll, pitch, yaw
e |ocal method (needs good initialization T/)

o Virtual point computation depends on it

e FEvaluated on KITTI, Apollo-SouthBay, 3DMatch,

00
Terrestrial Laser Scanners (TLS) Bai @ USA



DeepVCP

e Problems & solutions:

1. Lots of points! (N points)
=  Compute a high-dim feature for each LiDAR point

=  Compute a saliency score for each point and pick top-M << N for matching
2. Exact match for a point p in P may not exist in Q!

>  Generate multiple “matches” along a fixed grid around p’s projection in Q
e  Projection based on the initial guess transform T,

=  Each match’s features depend on features in the target point cloud
=  Assign score to each generated “match”

= Score-weighted average of matches is the “virtual point” (p’s correspondent)

[15)
BaidSUSA



Initial guess
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DeepVCP: Method
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DeepVCP: Details

e No iteration like in vanilla lterative Closest Point

e |Oss:

o First, L1 between

m computed position of p’s virtual closest point (VCP)
m true position under the GT transform

o (Then, actually solve for rigid transform.)

o Next, L1 between

m computed position of p using estimated transform

m true position under the GT transform

[T5)
BaidUSA



DeepVCP: Results

Method Angular Error(°)  Translation Error(m) Results on
Mean Max Mean Max KITTI

dataset.

ICP-Po2Po [3] 0.139 1.176 0.089 2.017

ICP-Po2P1 [3] 0.084 1.693 0.065 2.050 Similar

G-ICP [37] 0.067 0.375 0.065 2.045 numbers on

AA-ICP [28] 0.145 1.406 0.088 2.020 SouthBay.

NDT-P2D [39] 0.101 4.369 0.071 2.000

CPD [26] 0461 5076 | 0804  7.301 Much better

3DFeat-Net [46] 0.199 2428 | 0.116  4.972 worst-case
behavior.

Ours-Base 0.195 1.700 0.073 0.482

Ours-Duplication 0.164 1.212 0.071 0.482

[15)
BaidUSA




DeepVCP: Conclusions

e (Good worst-case guarantees (better than ICP)
e [or each point in source, “predict” position in target
e Then solve for 6-DoF transform with SVD

e [ imitations:

o Still local (relies on good initialization)
o No temporal consistency (see L3-Net for that)

o Spatial information aggregation relatively simple (KNN)

[T5)
BaidUSA



L3-Net (Lu et al., CVPR ‘19)

e Same group as DeepVCP.
TL; DR: Basically DeepVCP but...

a
b.
C
d

not end-to-end,
temporally consistent predictions (RNN-based),
3-DoF (x, vy, yaw) instead of 6-DoF (x, y, z, yaw, pitch, roll), and

(learned) cost volume inference instead of solver.

[T5)
BaidUSA



How About Approaching the Problem
Differently?




Deep Closest Point (Wang & Solomon)

e Also not iterative; solves for transform directly.

e Uses just 3D data (no intensity), and aligns over 6-DoF
o (X,YV, z, roll, pitch, yaw)

e Global method

o Each point in P attends to each point in Q

o No “guess” transform T, assumed

e \ery well-written paper IMHO, great primer on ICP itself!
e FEvaluated (only) on ModelNet40 III |



Deep Closest Point: Method

| DGCNN Transformer  Pointer

‘ J:X
R—=—f— =
s ] Does-
T|T Fy . — = -_’F‘yF _Ruyz+7
x-SR ¢ o

| " ” ‘ sound

ﬁ ﬁ familiar?

Backbone Point2Point
Feature “Affinity”
Networks (n?)

Solve for

rigid I o -
ansform I I

(SVD)

Use soft attention
to compute a “soft
match” in Y for
each point in X




Deep Closest Point: Method Details

e Backbones (embed points [N x 3] — [N x D]):

o PointNet
o Dynamic Graph CNN (build k-NN graph and run GNN inference)



Deep Closest Point: Method Details

e Attention Py =Fx + ¢(-FX7~F37>
o F, = features of point cloud X (I)y — f'y + ¢(fy’ FX)

o ¢ = fuses information from one point

[N x P] [N x P] [N x P]
cloud’s features into the other (O(n?) (Asymmetric
attention-based
N1 in number of points) fusion.)



Deep Closest Point: Method Details

e (enerate soft assignments Oy =Fr+ ¢(-FX, ]:y)

m(zi, V) = softmax(®y®P,, ) (Dy — fy + ¢(fy7 FX)
e Soft assignments between X INxPl [NxP] INxP]
(Asymmetric
. ttention-based
and Y points = hard atention base

assignments between X and

weighted sums of points in Y.



Deep Closest Point: Rigid Transform

e Once we have hard correspondences, nothing fancy

o SVD
o (Can backpropagate through SVD solver in TF and PyTorch

o (Don’t try to implement this at home, kids! ;)



e Train using GT transforms with a regression loss

Deep Closest Point: Training & Results

Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE({) MAE({)
ICP 892.601135 29.876431 23.626110 0.086005 0.293266 0.251916
Go-ICP [57] 192.258636 13.865736 2914169  0.000491 0.022154 0.006219
FGR [57] 97.002747  9.848997  1.445460 0.000182 0.013503 0.002231
PointNetLK [16]  306.323975 17.502113  5.280545  0.000784  0.028007  0.007203
DCP-v1 (ours) 19.201385  4.381938  2.680408  0.000025 0.004950 0.003597
DCP-v2 (ours) 9.923701 3.150191 2.007210  0.000025 0.005039 0.003703




Recap

Type
Input
Features

Matching

Inference

Datasets

Run Time

Conclusion

DeepVCP
local, 6-DoF
points+intensity

learned keypoint selection,
learned feats

search locally for “virtual match”

SVD

KITTI, SouthBay, 3DMatch, TLS

2sec on GPU

promising (esp. in worst case)

but still quite slow

L3-Net
local, 3-DoF
points+intensity

handcrafted keypoints,
learned feats

search locally for “virtual
match”

Learned cost volume
aggregation

SouthBay
120ms on GPU

looks robust but evaluation
metrics could be stricter

Deep Closest Point
global, 6-DoF
points

use all points, learned feats

PointerNet to find “virtual
match” in ENTIRE target

SVD

ModelNet40

10--750ms on GPU
(quadratic in nr of points!)

looks good but no real-world
evaluation



Discussion

e Point cloud registration still an open problem

e Clearly benefits from learning
o cf. challenges with dynamic objects, intensity calibration, outliers

e |f we can leverage temporal dimension we should do it!

e Challenges remain:

o E2E learning can be slow

o Need larger benchmarks, real-world data and tougher metrics



Future Work

e Even a naive combination of the two methods already has

great potential IMHO

1. Fancier backbones (e.g., DGCNN) should help in DeepVCP
2. Downsample feature point clouds like in DeepVCP
m  Keeps quadratic attention blow-up under control

3. Global attention like in DCP makes the whole method global

m  Should improve robustness a LOT
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Q&A



