Deep Point Cloud
_ Registration

Uber ATG Toronto Reading Group
== Scptember 12, 2019 ‘

= e—

Aol

Presenter: Andrei Barsan

Agenda

01 Overview & Motivation

02 Background: Point Cloud Registration
03 How Can Learning Help?

04 DeepVCP & L3-Net

05 Deep Closest Point

06 Discussion

Overview & Motivation

e Point cloud data is ubiquitous

e Purely geometric methods can work very well

o But limitations remain (dynamic objects, noisy data, domain shift, some

need good initialization)
e | earning can help with this!
o Learning + point clouds = relatively new

e Please feel free to stop me if you have any question!

Overview & Motivation Cont’d

e [ocus here: point cloud registration

e Applications:

o %8 Medical image processing
o % Motion estimation

o = Localization, mapping, SLAM

Background: Types of 3D Data

e Point sets (with or without normals)

e Surfels

e Implicit surfaces ----..____
o Parametric surfaces " d i /

e \oxels -* =T
e Meshes 08 S laptic Rendering 013D

Deformable Streaming Surface

Background: Registration

Local Global

e.g. lterative 1 e.g. Fast Global
Closest Point Registration

Sources: LSD-SLAM, OpenCV Tutorial, https://www.youtube.com/watch?v=uzOCS gdZuM, Intel

https://www.youtube.com/watch?v=uzOCS_gdZuM

Background: ICP

e |CP = lterative Closest Point

o Local method for point cloud registration

o Needs good initialization

Called with a few lines of code in Open3D

open3d as o03d
is t numpy as np

if __name__ __main__'
source 3d. io. re:
target = o03d.io.read_r
threshold = 0.02
trans_init = np.asarray([[0.862, 0.011, -0.507, 0.5],
[-0.139, 0.967, -0.215, 0.7],
[0.487, @.255, 0.835, -1.4], [e.0, 0.0, 0.0, 1.0]])

point_cloud("../../TestData/ICP/cloud_bin_0.pcd")
nt_cloud("../../TestData/ICP/cloud_bin_1.pcd")

print("Apply point-to-plane ICP")

reg_p2l = o3d.registration.registration_icp(
source, target, threshold, trans_init,
o3d.registration.TransformationEstimationPointToPlane())

print(reg_p21)

int("Transformation is:")

int(reg_p21l.transformation)

print("")

http://www.open3d.org/docs/release/tutorial/Basic/icp_registration.html
http://www.youtube.com/watch?v=uzOCS_gdZuM

Background: ICP Objective

e |CP = lterative Closest Point

1. Strong assumption!

Different # of points?
Unknown correspondences?
Missing correspondences?
Noisy measurements?

etc.

o Mathematical formulatii)n:/

o Given two corresponding point sets

X =A{x1,...,xn}
Y ={y1,---,yn}

o O O O O

o Solve:

R*,t* = argming, 5 Y7, |2 — Ryi — ¢|°

n

Background: ICP Algorithm

e |nputs:

o Point clouds: P and Q

o Initial transform: To
e while (not converged):

o (1) For each p in P pick closest neighbor qa, inT.Q
o (2) Solve for rigid motion T’ from correspondences (p, qp)
o (3)Update T , =TT,

Background: Limitations of ICP

e (1) What /s the closest neighbor? \
o Distance function? Normals? Weighting?

e (2) Noisy data and outliers?
o Dynamic objects?

e (3) Scalability? (100k+ points)

e (4) Initialization

o If you don’t have a good initial guess...

o ...you're gonna have a bad time!

How Can Learning Help?

e |Image-based method benefit from learning

o Image nearest neighbor: NetVLAD >> VLAD

o Classification: CNNs >> Bag-of-visual-words
e [earning also helps with point cloud tasks:
o Classification: PointNet, DGCNN

o Segmentation: PointNet, ContConv

e (Can learn which areas make the best matches.

DeepVCP (Lu et al., ICCV ‘19)

e VCP = Virtual Corresponding Points
e Not iterative; solves for transform directly.

e Uses LIDAR (with intensity), and aligns over 6-DoF
o XY, z, roll, pitch, yaw
e |ocal method (needs good initialization T/)

o Virtual point computation depends on it

e FEvaluated on KITTI, Apollo-SouthBay, 3DMatch,

00
Terrestrial Laser Scanners (TLS) Bai @ USA

DeepVCP

e Problems & solutions:

1. Lots of points! (N points)
= Compute a high-dim feature for each LiDAR point

= Compute a saliency score for each point and pick top-M << N for matching
2. Exact match for a point p in P may not exist in Q!

> Generate multiple “matches” along a fixed grid around p’s projection in Q
e Projection based on the initial guess transform T,

= Each match’s features depend on features in the target point cloud
= Assign score to each generated “match”

= Score-weighted average of matches is the “virtual point” (p’s correspondent)

[15)
BaidSUSA

Initial guess

\

Project with T

>¥+

Dot product between
each sampled coord.
feature and p

Source Point
Cloud

Once we have (p, q) matches V
p, solve for the optimal rigid
transform T with SVD.

1
0.0
0.0
0.0
0.1

0.2

0.1
0.2
0.1
0.2

0.3

0.0

0.1
0.3
0.6

0.4

Target
Point Cloud

0.0
0.1
0.3
0.6
0.9

Projected
Point Top

0.0

0.1
0.2
0.4

0.4

CNN + Softmax
+ Weighted
Sum

—

q = p’s virtual
closest point (VCP)

Sampled
Coordinates

BaidSUSA

DeepVCP: Method

A
Source & Target l Point-wise Feature | NXCXxKx36 Source & Target ;
. Concat x 1
Point Clouds [Keypoints Generated '
I Predicted Relative Pose v Relative Pose !
- N - 1
N - 28 i]
o Dado Featire o™ e X Corresponding Point '
20 X 2 —* X o Deep Feature o< Generation Layer S
8 ZN Extraction Layer ZN s Embedding Layer X :' pessty i e
sample PR = e .]
L Candidates > X 2 x|= 8
o = ’ =|E 3!
[} —_—
N x K x 36 > ; g
~ Ees 7 o N o — .
o | T o TR 2 on \‘ : B :
ik — = < — @3 % B8
- - -—- wd
A= = - / = yl=R =|EE:
- '
.-”" Weighting Layer i 1 GT Relative Pose*, + L] i O x E
- H v SO |
> 4 Same A 1 1
e Concat e T Aomad)
__-_________--—____--—____.’/_-—-_-___-__-_-_____-_-—--—-___---_________-I __ L e e

[15)
BaidUSA

DeepVCP: Details

e No iteration like in vanilla lterative Closest Point

e |Oss:

o First, L1 between

m computed position of p’s virtual closest point (VCP)
m true position under the GT transform

o (Then, actually solve for rigid transform.)

o Next, L1 between

m computed position of p using estimated transform

m true position under the GT transform

[T5)
BaidUSA

DeepVCP: Results

Method Angular Error(°) Translation Error(m) Results on
Mean Max Mean Max KITTI

dataset.

ICP-Po2Po [3] 0.139 1.176 0.089 2.017

ICP-Po2P1 [3] 0.084 1.693 0.065 2.050 Similar

G-ICP [37] 0.067 0.375 0.065 2.045 numbers on

AA-ICP [28] 0.145 1.406 0.088 2.020 SouthBay.

NDT-P2D [39] 0.101 4.369 0.071 2.000

CPD [26] 0461 5076 | 0804 7.301 Much better

3DFeat-Net [46] 0.199 2428 | 0.116 4.972 worst-case
behavior.

Ours-Base 0.195 1.700 0.073 0.482

Ours-Duplication 0.164 1.212 0.071 0.482

[15)
BaidUSA

DeepVCP: Conclusions

e (Good worst-case guarantees (better than ICP)
e [or each point in source, “predict” position in target
e Then solve for 6-DoF transform with SVD

e [imitations:

o Still local (relies on good initialization)
o No temporal consistency (see L3-Net for that)

o Spatial information aggregation relatively simple (KNN)

[T5)
BaidUSA

L3-Net (Lu et al., CVPR ‘19)

e Same group as DeepVCP.
TL; DR: Basically DeepVCP but...

a
b.
C
d

not end-to-end,
temporally consistent predictions (RNN-based),
3-DoF (x, vy, yaw) instead of 6-DoF (x, y, z, yaw, pitch, roll), and

(learned) cost volume inference instead of solver.

[T5)
BaidUSA

How About Approaching the Problem
Differently?

Deep Closest Point (Wang & Solomon)

e Also not iterative; solves for transform directly.

e Uses just 3D data (no intensity), and aligns over 6-DoF
o (X,YV, z, roll, pitch, yaw)

e Global method

o Each point in P attends to each point in Q

o No “guess” transform T, assumed

e \ery well-written paper IMHO, great primer on ICP itself!
e FEvaluated (only) on ModelNet40 III |

Deep Closest Point: Method

| DGCNN Transformer Pointer

‘ J:X
R—=—f— =
s] Does-
T|T Fy . — = -_’F‘yF _Ruyz+7
x-SR ¢ o

| " ” ‘ sound

ﬁ ﬁ familiar?

Backbone Point2Point
Feature “Affinity”
Networks (n?)

Solve for

rigid I o -
ansform I I

(SVD)

Use soft attention
to compute a “soft
match” in Y for
each point in X

Deep Closest Point: Method Details

e Backbones (embed points [N x 3] — [N x D]):

o PointNet
o Dynamic Graph CNN (build k-NN graph and run GNN inference)

Deep Closest Point: Method Details

e Attention Py =Fx + ¢(-FX7~F37>
o F, = features of point cloud X (I)y — f'y + ¢(fy’ FX)

o ¢ = fuses information from one point

[N x P] [N x P] [N x P]
cloud’s features into the other (O(n?) (Asymmetric
attention-based
N1 in number of points) fusion.)

Deep Closest Point: Method Details

e (enerate soft assignments Oy =Fr+ ¢(-FX,]:y)

m(zi, V) = softmax(®y®P,,) (Dy — fy + ¢(fy7 FX)
e Soft assignments between X INxPl [NxP] INxP]
(Asymmetric
. ttention-based
and Y points = hard atention base

assignments between X and

weighted sums of points in Y.

Deep Closest Point: Rigid Transform

e Once we have hard correspondences, nothing fancy

o SVD
o (Can backpropagate through SVD solver in TF and PyTorch

o (Don’t try to implement this at home, kids! ;)

e Train using GT transforms with a regression loss

Deep Closest Point: Training & Results

Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE({) MAE({)
ICP 892.601135 29.876431 23.626110 0.086005 0.293266 0.251916
Go-ICP [57] 192.258636 13.865736 2914169 0.000491 0.022154 0.006219
FGR [57] 97.002747 9.848997 1.445460 0.000182 0.013503 0.002231
PointNetLK [16] 306.323975 17.502113 5.280545 0.000784 0.028007 0.007203
DCP-v1 (ours) 19.201385 4.381938 2.680408 0.000025 0.004950 0.003597
DCP-v2 (ours) 9.923701 3.150191 2.007210 0.000025 0.005039 0.003703

Recap

Type
Input
Features

Matching

Inference

Datasets

Run Time

Conclusion

DeepVCP
local, 6-DoF
points+intensity

learned keypoint selection,
learned feats

search locally for “virtual match”

SVD

KITTI, SouthBay, 3DMatch, TLS

2sec on GPU

promising (esp. in worst case)

but still quite slow

L3-Net
local, 3-DoF
points+intensity

handcrafted keypoints,
learned feats

search locally for “virtual
match”

Learned cost volume
aggregation

SouthBay
120ms on GPU

looks robust but evaluation
metrics could be stricter

Deep Closest Point
global, 6-DoF
points

use all points, learned feats

PointerNet to find “virtual
match” in ENTIRE target

SVD

ModelNet40

10--750ms on GPU
(quadratic in nr of points!)

looks good but no real-world
evaluation

Discussion

e Point cloud registration still an open problem

e Clearly benefits from learning
o cf. challenges with dynamic objects, intensity calibration, outliers

e |f we can leverage temporal dimension we should do it!

e Challenges remain:

o E2E learning can be slow

o Need larger benchmarks, real-world data and tougher metrics

Future Work

e Even a naive combination of the two methods already has

great potential IMHO

1. Fancier backbones (e.g., DGCNN) should help in DeepVCP
2. Downsample feature point clouds like in DeepVCP
m Keeps quadratic attention blow-up under control

3. Global attention like in DCP makes the whole method global

m Should improve robustness a LOT

References

e Pomerleau, F., Colas, F., & Siegwart, R. (2015). A Review of Point Cloud Registration Algorithms for Mobile

Robotics. Foundations and Trends in Robotics, 4(1), 1-104. https://doi.org/10.1561/2300000035
o A great recent survey on the ICP family applied to robotics. Very comprehensive (>100 pages) but easy
to skim and browse.

e Elbaz, G., Avraham, T., & Fischer, A. (2017). 3D point cloud registration for localization using a deep neural
network auto-encoder. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017-Janua, 2472-2481. https://doi.org/10.1109/CVPR.2017.265

e Ding, L., & Feng, C. (2018). DeepMapping: Unsupervised Map Estimation From Multiple Point Clouds.
Retrieved from http://arxiv.org/abs/1811.11397

e Park, J., Zhou, Q. Y., & Koltun, V. (2017). Colored Point Cloud Registration Revisited. Proceedings of the IEEE
International Conference on Computer Vision, 2017-Octob, 143-152. https://doi.org/10.1109/ICCV.2017.25

e Lu, W, Zhou,Y., Wan, G., Hou, S., & Song, S. (2019). L3-Net : Towards Learning based LiDAR Localization for
Autonomous Driving. CVPR. Long Beach: IEEE.

e Zhao, H., Jiang, L., & Jiaya, C. F. (n.d.). PointWeb : Enhancing Local Neighborhood Features for Point Cloud
Processing. 1, 5565-5573.

e Lu, W, Wan, G, Zhou, Y., Fu, X, Yuan, P., & Song, S. (2019). DeepICP: An End-to-End Deep Neural Network
for 3D Point Cloud Registration. Retrieved from http://arxiv.org/abs/1905.04153

https://doi.org/10.1561/2300000035

Thank you!

Q&A

