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Problem & Motivation

• Self-driving vehicles are complex 
robotic systems 

• Maps can improve safety and 
performance of perception, motion 
forecasting and planning

?
• Precise ego-localization is required for using 

maps



Localization Desiderata

High Accuracy 
(Centimeter-level)

Low Cost for 
Map Building & 

Storage

Real-Time 
Inference
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Ground LiDAR Intensity (Levinson et al., 2007) 
Ground LiDAR + RTK (Wan et al., 2017) 
ICP-Based (Yoneda et al., 2014) 

x
x
Ours

OSM-Based (Floros et al., 2013) 
Retrieval-Based, e.g., NetVLAD (Arandjelović et al., 2015)x



Problem Statement

● Online localization w.r.t. map 
● Sub-meter accuracy 
● Vehicle on ground: state = (x, y, yaw)
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Proposed Method
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Method Overview
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Bayesian Filter 
Prediction Step
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Let’s return to the 
map building



Offline: Sign Map Building Process
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1) Visual Cue Extraction
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2) Matching
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3) Pose Filter
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Dataset

● 312km of driving on multiple US highways 
● Challenges: 

- High speed 
- Repetitive structures



Metrics

● Localization accuracy 
- Euclidean distance w.r.t. true pose 

● Worst-case behavior critical 
- Report 50th, 95th and 99th percentiles



Experimental Results: Performance



Experimental Results: Ablation Study



Experimental Results: Storage



Qualitative Results



Discussion and Future Work
● Complementary semantic cues can enable accurate map-based localization on 

highways using a fraction of the storage required for traditional HD maps 

● Reliable localization in the correct lane on >300km 

● 3—4 orders of magnitude less storage than appearance based maps 
● Future work: 

- Integrate with compressed appearance maps 

- Re-localization module

Thank you!





FAQ
● Unpainted roads? 

● Road boundaries are still a strong cue! 
● Lack of road signs & off-road? 

● Can be mitigated with (compressed*) appearance maps 
● Longitudinal error? 

● Safety is much more related to lateral accuracy in the 
highway scenarios we evaluated.

*) Wei et al., Learning to Localize through Compressed Binary 
Maps, CVPR ‘19



FAQ
● What if the maps are out of date? 

● Change detection + mapless driving. 
● No over-reliance on any one sensor or the maps. 

● If you want sparse maps, why no visual SLAM/ORB-SLAM, 
etc. 
● Accuracy still not high enough in the lateral dimension. 

● Why not LOAM? 
● We are planning to investigate more advanced LiDAR 

SLAM methods.


