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Overview and Motivation
● Scope: Recent advances in combining geometry and learning for computer 

vision tasks.
● Motivation: Deep learning is powerful but computer vision is still inherently 

geometric in nature.
● Big question: How can we get the best of both worlds?

?
Source: KinectFusion by  Newcombe et al.
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[1] Matching (for Stereo)
● Fundamental CV problem:

○ Find local correspondences across multiple sensors.

● Basis for numerous tasks:
○ Stereo
○ Flow
○ Structure from Motion

● Classic:
○ Engineered descriptors
○ SSD/MI-based matching
○ Cannot be adapted to specific problem domain

■ Matching is rarely the end-goal!

Image credit: http://cs.carleton.edu 

http://cs.carleton.edu


[1] Matching: Geometry + Learning
● Problem: Limitations of classic cost functions for stereo matching.

○ Limited context and no semantics

○ Unable to adapt to specific domain: flow / stereo / SfM / etc.

● Solution: (one of many) Replace engineered matcher with learned one.
○ Žbontar and LeCun pioneered this (learned cost + SGM)

○ Luo et al. made this more efficient (+ output uncertainty!)



[2] Optimization in Vision

● Example: Bundle adjustment typically solved with Gauss-Newton and 
Levenberg-Marquardt. Main challenges?

● Many non-learning tasks vision require 
geometric optimization:

○ Visual odometry
○ Structure from motion
○ Image alignment and stitching

Example task: Bundle Adjustment
Image credit: Building Rome in a Day by Agarwal et al.



[2] Optimization in Vision Continued
● Example: Bundle adjustment typically solved with Gauss-Newton and 

Levenberg-Marquardt. Main challenges?

📈 Scalability 💪 Robustness

What if there are millions of parameters? What if a match is incorrect?



[2A] Improving Scalability
● Problem: Dense depth is difficult to optimize over in bundle adjustment.
● Solution: Reduce effective number of unknowns.

Option 1: CodeSLAM
● Train autoencoder to predict 

dense depth conditioned on 
intensity image.

● Optimize over low-dimensional 
(128D) latent code in BA. 
instead of dense depth.

Option 2: BA-Net
● Train network to predict 

monocular depth as linear 
combination of “depth bases”.

● Optimize over weights (128) in 
BA instead of dense depth.

Joint BA over dense depth and camera poses becomes 
easier to solve!



[2B] Improving Robustness
● Problem: Optimizing photometric-like error terms requires good initialization.

○ Limited robustness to dynamic object and complex lighting changes.

● Solution: Introduce learning in the optimizer itself as an implicit regularizer.

LS-Net (Clark et al.)



[2B] Improving Robustness Cont’d

● Results from NYU dataset.



[3] Unsupervised Geometric Learning
● Problem: Learn low-level vision on real data without supervision.
● Challenges: How do we get the network to learn what we want?
● Solution:

○ Given monocular frames (t) and (t - 1), try to estimate each from the other.
○ Use photometric and geometric loss terms.

● Problem 2.0: Photometric / 2D 
Geometric loss terms are biased 
towards areas closer to the 
camera!

Image credit: Zhou et al., 2017



[3] Unsupervised Geometric Learning Continued 
● Problem 2.0: Photometric / 2D 

Geometric loss terms are biased 
towards areas closer to the camera!

● Solution 2.0: Compute geometric loss 
in 3D!

○ Unsupervised Learning [...] Using 3D 
Geometric Constraints by Mahjourian et al., 
2018

● Sharper and more accurate results 
than methods using just 2.5D losses.



Existing Work
● Learning to Localize using a LiDAR Intensity Map
● Motivation: Match LiDAR observation to a map for high-precision localization.
● Challenges: Dynamic objects, calibration mismatch.
● Idea: Replace matching heuristics with “learning to match”.



Future Work
● More sophisticated geometry + more learning = more power

● Relaxing nondifferentiable methods to be diffable and integrating them in 

structured prediction pipelines trained E2E is very powerful!
○ Example: Differentiable semantic point cloud registration

● Experiments: lots of challenging datasets available!
○ KITTI, SUN3D, etc.



Conclusions
● Adding geometric structure allows a neural net to focus on questions that 

geometry can’t answer!

● We saw examples in stereo, bundle adjustment, and unsupervised learning.

● Paradigm not restricted to cameras.

● Fast-growing field with lots of opportunities.
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