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Overview and Motivation

e Scope: Recent advances in combining geometry and learning for computer
vision tasks.

e Motivation: Deep learning is powerful but computer vision is still inherently
geometric in nature.

e Big question: How can we get the best of both worlds?
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[1] Matching (for Stereo)

e Fundamental CV problem:
o Find local correspondences across multiple sensors.

e Basis for numerous tasks:

o Stereo
o Flow
. Image credit: http://cs.carleton.edu
o Structure from Motion
e C(Classic:

O  Engineered descriptors

o SSD/MI-based matching

o Cannot be adapted to specific problem domain
m Matching is rarely the end-goal!
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[1] Matching: Geometry + Learning

e Problem: Limitations of classic cost functions for stereo matching.

o Limited context and no semantics

o Unable to adapt to specific domain: flow / stereo / SfM / etc.

e Solution: (one of many) Replace engineered matcher with learned one.

o Zbontar and LeCun pioneered this (learned cost + SGM)

o Luo et al. made this more efficient (+ output uncertainty!)



[2] Optimization in Vision

e Many non-learning tasks vision require

geometric optimization: ‘
o Visual odometry Example task: Bundle Adjustment

Image credit: Building Rome in a Day by Agarwal et al.

o  Structure from motion
o Image alignment and stitching

e Example: Bundle adjustment typically solved with Gauss-Newton and
Levenberg-Marquardt. Main challenges?



[2] Optimization in Vision Continued

e Example: Bundle adjustment typically solved with Gauss-Newton and
Levenberg-Marquardt. Main challenges?
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What if there are millions of parameters? What if a match is incorrect?
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[2A] Improving Scalability

e Problem: Dense depth is difficult to optimize over in bundle adjustment.
e Solution: Reduce effective number of unknowns.

T

Option 1: CodeSLAM Option 2: BA-Net
e Train autoencoder to predict e Train network to predict
dense depth conditioned on monocular depth as linear
intensity image. combination of “depth bases”.
e  Optimize over low-dimensional e Optimize over weights (128) in
(128D) latent code in BA. BA instead of dense depth.
instead of dense depth.
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[2B] Improving Robustness

e Problem: Optimizing photometric-like error terms requires good initialization.
o Limited robustness to dynamic object and complex lighting changes.

e Solution: Introduce learning in the optimizer itself as an implicit regularizer.

LS-Net (Clark et al.)
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[2B] Improving Robustness Cont'd
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[3] Unsupervised Geometric Learning

e Problem: Learn low-level vision on real data without supervision.
e Challenges: How do we get the network to learn what we want?

e Solution:
o  Given monocular frames (t) and (t - 1), try to estimate each from the other.
o Use photometric and geometric loss terms.

Depth CNN

e Problem 2.0: Photometric / 2D
Geometric loss terms are biased
towards areas closer to the
camera!

Image credit: Zhou et al., 2017



[3] Unsupervised Geometric Learning Continued

e Problem 2.0: Photometric / 2D 3D ICP Losses|
Geometric loss terms are biased & | %} ‘ |
Structured Point Cloud Qt—ln\ ' ‘ " Structured Point Cloud Qt
towards areas closer to the cameral
Tt
e Solution 2.0: Compute geometric loss £
in 3D! Egor;1|otion £
o Unsupervised Learning [...] Using 3D O Sl
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than methods using just 2.5D losses.



Existing Work

Learning to Localize using a LIDAR Intensity Map

Motivation: Match LiDAR observation to a map for high-precision localization.
Challenges: Dynamic objects, calibration mismatch.

Idea: Replace matching heuristics with “learning to match”.
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Future Work

e More sophisticated geometry + more learning = more power
e Relaxing nondifferentiable methods to be diffable and integrating them in

structured prediction pipelines trained E2E is very powerful!
o Example: Differentiable semantic point cloud registration
e Experiments: lots of challenging datasets available!
o KITTI, SUN3D, etc.



Conclusions

e Adding geometric structure allows a neural net to focus on questions that
geometry can’t answer!

e We saw examples in stereo, bundle adjustment, and unsupervised learning.

e Paradigm not restricted to cameras.

e Fast-growing field with lots of opportunities.
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