Geometry-Aware Learning Methods for Computer Vision

loan Andrei Bârsan iab@cs.toronto.edu

January 18, 2019

Supervisor: Prof. Raquel Urtasun

Overview and Motivation

- Scope: Recent advances in combining geometry and learning for computer vision tasks.
- **Motivation:** Deep learning is powerful but computer vision is still inherently geometric in nature.
- **Big question:** How can we get the best of both worlds?

Source: KinectFusion by Newcombe et al.

Agenda

- Area 1: Matching
- Area 2: Optimization and Meta-Optimization
- Area 3: Unsupervised Geometric Learning
- Existing & Future Work
- Conclusions

[1] Matching (for Stereo)

- Fundamental CV problem:
 - Find local correspondences across multiple sensors.
- Basis for numerous tasks:
 - Stereo
 - \circ Flow
 - Structure from Motion
- Classic:
 - Engineered descriptors
 - SSD/MI-based matching
 - Cannot be adapted to specific problem domain
 - Matching is rarely the end-goal!

Image credit: http://cs.carleton.edu

[1] Matching: Geometry + Learning

- **Problem:** Limitations of classic cost functions for stereo matching.
 - Limited context and no semantics
 - Unable to adapt to specific domain: flow / stereo / SfM / etc.
- **Solution:** (one of many) Replace engineered matcher with learned one.
 - Žbontar and LeCun pioneered this (learned cost + SGM)
 - Luo et al. made this more efficient (+ output uncertainty!)

[2] Optimization in Vision

- Many non-learning tasks vision require geometric optimization:
 - Visual odometry
 - Structure from motion
 - Image alignment and stitching

Example task: Bundle Adjustment Image credit: Building Rome in a Day by Agarwal et al.

• Example: Bundle adjustment typically solved with **Gauss-Newton** and **Levenberg-Marquardt**. Main challenges?

[2] Optimization in Vision Continued

• Example: Bundle adjustment typically solved with **Gauss-Newton** and **Levenberg-Marquardt**. Main challenges?

$$|x_{ij} - \pi \left(C_i X_j \right) ||^2$$

What if there are millions of parameters?

What if a match is incorrect?

[2A] Improving Scalability

- **Problem:** Dense depth is difficult to optimize over in **bundle adjustment**.
- Solution: Reduce effective number of unknowns.

[2B] Improving Robustness

- **Problem:** Optimizing photometric-like error terms requires good initialization.
 - Limited robustness to dynamic object and complex lighting changes.
- Solution: Introduce learning in the optimizer itself as an implicit regularizer.

$$\Delta \mathbf{x}_i = -(\mathbf{J}_i^T \mathbf{J}_i + \lambda \operatorname{diag}(\mathbf{J}_i^T \mathbf{J}_i))^{-1} \mathbf{J}_i^T \mathbf{r}_i$$

[2B] Improving Robustness Cont'd

• Results from NYU dataset.

[3] Unsupervised Geometric Learning

- Problem: Learn low-level vision on real data without supervision.
- **Challenges:** How do we get the network to learn what we want?
- Solution:
 - Given monocular frames (t) and (t 1), try to estimate each from the other.
 - Use **photometric** and **geometric** loss terms.
- **Problem 2.0:** Photometric / 2D Geometric loss terms are biased towards areas closer to the camera!

[3] Unsupervised Geometric Learning Continued

- **Problem 2.0:** Photometric / 2D Geometric loss terms are biased towards areas closer to the camera!
- Solution 2.0: Compute geometric loss in 3D!
 - Unsupervised Learning [...] Using 3D
 Geometric Constraints by Mahjourian et al.,
 2018
- Sharper and more accurate results than methods using just 2.5D losses.

Existing Work

- Learning to Localize using a LiDAR Intensity Map
- **Motivation:** Match LiDAR observation to a map for high-precision localization.
- Challenges: Dynamic objects, calibration mismatch.
- **Idea:** Replace matching heuristics with "learning to match".

Future Work

- More sophisticated geometry + more learning = more power
- Relaxing nondifferentiable methods to be diffable and integrating them in structured prediction pipelines trained E2E is very powerful!
 - Example: Differentiable semantic point cloud registration
- Experiments: lots of challenging datasets available!
 - KITTI, SUN3D, etc.

Conclusions

- Adding geometric structure allows a neural net to focus on questions that geometry can't answer!
- We saw examples in stereo, bundle adjustment, and unsupervised learning.
- Paradigm not restricted to cameras.
- Fast-growing field with lots of opportunities.

Thank you!