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Overview & Motivation

e Predicting the future is important but challenging
e In principle, we have infinite training data
e [ everaging these “free” labels is very challenging

e T[his talk: LIDAR point cloud forecasting



Why is Unsupervised Prediction Hard?

e Multimodality
e Difficulties learning dynamics and
‘common sense” from scratch

e [or camera videos

o SotA limited to 1--2 seconds

e (Can we do better with LIDAR?

Villegas, Ruben, et al. "High fidelity video prediction
with large stochastic recurrent neural networks."
Advances in Neural Information Processing Systems.
2019.



Proposed Contributions

1. Define a new task, Scene Point Cloud Sequence
Forecasting

2. Present a simple & effective method for this task

3. Present a prediction method based on this

4. Present new metrics to overcome limitations of existing

ones (ADE/FDE vs. recall trade-off)



Proposed Method

Scene Point Cloud Sequence Forecasting (Ours)

Forecast

Scene point cloud in past M frames Scene point cloud in future N frames



Proposed Method: Architecture
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Losses for Sensor Forecasting

e Range images

o L1-loss on range images
o BCE on sparsity mask

o Chamfer Distance Loss on unpacked point cloud
e 3D points

o Chamfer Distance Loss on decoded point cloud

dop(S1,82) = Y-, min lle =yl + 3 min [z - vl
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Prediction as Tracking
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Prediction as Tracking

Scene Point Cloud Sequence Forecasting (Ours)
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Scene point cloud in past M frames Scene point cloud in future N frames

e Notes
o No need for tracking labels

O  Still need a trained detector! (Point R-CNN is used.)



Prediction as Tracking
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e Sensor forecasting done with their method
e Detection done with Point R-CNN

e T[racking done with a Kalman Filter-based tracker



Prediction Metric Challenges

e [Evaluating predictions from GT detection = easy, 1:1 mapping

e [Evaluating predictions from real detection = hard, not a 1:1 mapping
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Prediction Metric Challenges

e Average Displacement Error vs. V2 —— Social-BIGAT_3.05_20
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o System-level metrics Recall



New Prediction Metrics: Idea
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New Prediction Metrics: Idea

PY M easure — GT trajectories
-~ Past trajectories obtained from tracker
o Average ADE (AADE)  TTTomes Predicted future trajectories
o  Average FDE (AFDE) Past Future
e |mplemented as discrete sum /
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Proposed new evaluation



New Prediction Metrics: GT Association

GT trajectories
Past trajectories obtained from tracker
------- Predicted future trajectories

e Predicted trajectories matched with

GT using the Hungarian algorithm

Past Future
e |n contrast to, e.g., loU-based
association _-/—-:'-i
e May result in overly optimistc /N T ---- -
metrics i

Proposed new evaluation



Results

e Sensor Forecasting
e BEV Tracking from LIDAR

e Datasets

o KITTI, nuScenes



Results: Sensor Forecasting

e Compare predicted vs. true point cloud

o Chamfer Distance

o Earth-Mover Distance

Earth Mover’s distance Consider S1, S> C R3 of equal
size s = |S1| = | S2|. The EMD between A and B is defined
as:

Approximated for dEMD(S]_,SQ) = mln Z ||:IZ — ||2
computational reasons —» P51

(more info)

where ¢ : S; — 55 is a bijection.


https://arxiv.org/abs/1612.00603

Results: Sensor Forecasting

Point Range
Clouds + Images +
PointNet 2D CNN

Datasets Metrics Identity GT-Ego Est-Ego Align-ICP  Align-[63] SceneFlow Ours+4Point Ours4+RM
KITTI-1.08 CDJ 12f8,2 547 9.18 6.-13 6.-0‘2 3.15 1.71 0.89
s EMDJ) 526.87 391.03  495.21 418.25 439.17 291.63 211.47 128.81
R CD) 13.31 7.91 11.31 9.14 9.57 5.08 1.95 0.94
KILTE s EMD/) 602.89 452.81 502.83 470.25 493.26 351.46 267.42 175.54
NuScenes-1.0s CD) 8.42 2.16 4.91 4.04 3.50 1.93 1.03 0.35
' EMD]) 461.63 168.37 299.13 281.53 270.81 117.41 135.94 78.37
e . CDJ) 10.16 2.85 6.52 7.13 5.27 3.81 1.37 0.41
NuScenes-3.0s

EMD/) 494.81 190.14  370.91 419.37 332.97 294.53 128.26 91.83




Results: Tracking

Originally for riginally for
Pedestrians Pedestrians

Datasets Metrics Samples Conv-Social [11] Social-GAN [21] Social-BiGAT [32] TraPHic [8] Ours
1 0.792 0.524 1.099 0.470 0.317
KITTL1.0s il 20 0.623 0.340 0.443 0.382 o
' AFDE| 1 1.285 0.886 1.708 0.889 0.405
20 1.152 0.511 0.546 0.613
1 1.692 1.362 2.720 1.432 0.408
KITTI-3.0s A DE: 20 1.593 0.984 1.231 0.725 =
. AFDE| 1 2.670 2.267 3.938 2.536 0.504
20 2.385 1.512 1.405 1.118




Ablation Study: Amount of Data
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Fig. 9: Error vs. amount of training data.

e More (unlabeled) data improves sensor forecasting.



ilure Cases

Qualitative Results & Fa




tative Results & Failure Cases

Qual




Strengths & Weaknesses

Strengths

Promising new approach to PnP.
Acknowledges limitations of current
prediction metrics.

Reduced reliance on training data.
Can improve many things about the
architecture.

Adding maps to the method is

possible (we can predict egomotion).

Weaknesses

e (T track assignment may make
method look better than it is.

e Fails badly on smaller objects like
pedestrians (likely due to pooling).

e Still need supervision for the
detector.

e Multi-modal predictions are much

harder in this setting.



Predicted Questions

e S0 if this basically forecasting LIDAR flow?

o Well, kind of, yes.
e \What labels do they actually need?

o Need supervised data to train the detector, then nothing.
e How fast is this?

o They don’t say, but probably not too horrible when they use range images.

o But need extra work to actually do prediction!



Insights

e Our PnP architecture would naturally bypass their global pooling bottlenecks.

e Detection does not need to be separate.
o  Can backprop through the forecasting to fine-tune a detector
e Residual forecasting may help

o  Decomposing frames into egomotion and dynamic object components can further constrain the task



Conclusion

e The paper defines a new task “sensor forecasting” and applies it to prediction
e [orecast sensor data, then treat prediction as tracking

e Highlights importance of new prediction metrics

e Decent forecasting without track labels

e Some limitations in the evaluation (baselines, GT matching)

e Lots of room for architectural improvement



Thank you!

Q&A Timel
Paper:

Special thanks to Sergio and Julieta for proofreading help!


https://arxiv.org/abs/2003.08376

Bonus Slides



Architecture Details

MLP (8, 16, 32, 64, 128) MLP (256, 512, 1024)
Max-pooling

< P — Max-pooling
o
¢ Output feature

Scene point cloud

Concatenation
Local feature

Fig. 4: Point-based encoder. A scene point cloud with shape of K x 3 is fed into
shared MLP to obtain local feature for each point. Then a global feature is obtained
by max-pooling. We then fuse the local and global features by concatenation, which is
then processed by subsequent MLP and max-pooling to obtain the output feature.

Discretized
spherical plane

T
5, 1 \ |2 Range map e
e - 1 transformer [ | . \,\*\s =

Output feature

Scene point cloud “qe
10?“6 2D CNNs

Fig. 5: Range map-based encoder. A scene point cloud with size of K x 3 along
with a discretized spherical plane is fed into the range map transformer to obtain the
2D range map with resolution of H x W. We use a standard 2D CNNs to extract the

final output feature from the 2D range map.



Results: Earth Mover Distance

e Proposed for point clouds in A Point Set Generation

Network for 3D Object Reconstruction from a Single Image

Earth Mover’s distance Consider S1, So C R? of equal

size s = |S1| = |S2|. The EMD between A and B is defined
as:

dpmp (51, 52) =, min Z |z — ¢(z)||2
Approximated for pante z€S

computational reasons
following the above

paper.

1

where ¢ : §7 — 55 is a bijection.
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Earth Mover Distance vs. Chamfer
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In Figure 3, we illustrate the distinct mean-shape be-
havior of EMD and CD on synthetic shape distributions,
by minimizing E,. s[L(z, s)] through stochastic gradient
descent, where S is a given shape distribution, L is one of
the distance functions.

In the first and the second case, there is a single
continuously changing hidden variable, namely the radius
of the circle in (a) and the location of the arc in (b). EMD
roughly captures the shape corresponding to the mean value
of the hidden variable. In contrast CD induces a splashy
shape that blurs the shape’s geometric structure. In the latter
two cases, there are categorical hidden variables: which
corner the square is located at (c) and whether there is a
circle besides the bar (d). To address the uncertain presence
of the varying part, the minimizer of CD distributes some
points outside the main body at the correct locations; while
the minimizer of EMD is considerably distorted.


https://arxiv.org/pdf/1612.00603.pdf

Ablation Study: Full vs. Partial Sweeps

Table 3: Effect of the global
scene constraint.

Datasets 1\“‘Iet1“ics w/o Scene w/ Scene
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e Predicting full sweeps, not just points inside GT boxes helps.



